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1 Introduction

The family of variance gamma (VG) processes was introduced by Madan and Seneta (1990) and
later extended by Madan et al. (1998) as a continuous time model for log-prices of securities.
Originally established as Brownian motions subordinated by independent gamma processes,
VG processes are pure-jump, infinite activity, finite variation Lévy-processes. Although there
is empirical evidence that stock (log-)prices do not follow Lévy-processes (see e.g. Klößner
(2006)), the VG model provides a better fit to market option prices than the Black-Scholes
model, particularly mitigating the volatiliy smile effect. While closed-form expressions for
European (vanilla) option prices in the VG model are available, the valuation of path-dependent
options poses a greater challenge. Recently, two different approaches for efficient Monte Carlo
and Quasi-Monte Carlo option pricing under the VG model were proposed, one by Avramidis
and L’Ecuyer (2006), the other one by Ribeiro and Webber (2006). Both approaches make use
of gamma bridge sampling techniques, but in different fashions and with different success, see
Becker (2007).
A fundamental tool for the Monte Carlo methods introduced in this paper is a newly developed,
fast and exact simulation method for final, minimal and maximal values of VG processes (in-
cluding an additional drift term). Applications for final and extremal values of price processes
include volatility/covariance estimation (see e.g. Rogers et al. (1994), Yang and Zhang (2000),
Brandt and Diebold (2006), Rogers and Zhou (2008)), specification tests (see e.g. Becker et al.
(2007), Klößner (2006), Klößner (2007)) and model calibration (see e.g. Lildholdt (2002), Ven-
ter et al. (2005)). In these applications, simulated triplets of final, minimal and maximal values
can be used for performance measurements of estimators and power studies for specification
tests. Moreover, the final, minimal and maximal values of an asset determine the payoffs of
special path-dependent options, in particular single/double barrier options (with continuous
reset condition), lookback options and swing options, which leads to the Monte Carlo option
pricing applications this paper focuses upon.
The remainder is organized as follows: section 2 introduces some basic notation and de-
scribes the difference-of-gammas bridge sampling method (DGBS), which was introduced by
Avramidis et al. (2003) and successfully applied by Avramidis and L’Ecuyer (2006). In section
3, an adaptive generalization of the DGBS method is developed to achieve a fast and exact (up
to given precision bounds) simulation procedure for final, minimal and maximal values of VG
processes with additional drift term. In section 4, the special payoff structure of barrier options
is exploited to design a fast and completely unbiased MC option pricing method for single and
double barrier options with continuous reset conditions. Section 5 compares the performance
of the newly introduced methods to the MC methods developed in Avramidis and L’Ecuyer
(2006) and traditional methods based on full dimensional path sampling. Section 6 concludes
with a short summary.

2 Preliminaries

For θ ∈ R, σ > 0 let W (θ,σ) = (W (θ,σ)
t )t≥0 denote a Brownian motion with drift θ and volatility

σ, i.e. W
(θ,σ)
t = θt + σWt, t ≥ 0, for a standard Brownian motion W = (Wt)t≥0. For a, b > 0

let Gamma(a, b) denote the gamma distribution with shape parameter a and scale parameter
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b, i.e. the distribution given by the probability density function

fGamma(a,b)(x) = xa−1 e−x/b

baΓ(a)
1x>0 .

For µ, ν > 0 let G(µ,ν) = (G(µ,ν)
t )t≥0 denote a gamma process with drift µ and volatility ν,

i.e. a process with G
(µ,ν)
0 = 0 and independent stationary increments G

(µ,ν)
t+h −G

(µ,ν)
t following

a Gamma(hµ2

ν , ν
µ) distribution (t ≥ 0, h > 0). A VG process X̃ = (X̃t)t≥0 with parameters

(θ, σ, ν) is obtained by subordinating a Brownian motion W (θ,σ) with drift θ and volatility σ
by a gamma process G(1,ν)with drift µ = 1 and volatility ν, which is independent of W (θ,σ),
i.e.

X̃t = θG
(1,ν)
t + σW

G
(1,ν)
t

, t ≥ 0,

for a standard Brownian motion W independent of G(1,ν).
Apart from the representation as a subordinated Brownian motion, every VG process can
be constructed as the difference of two independent gamma processes. In particular, a VG
process X̃ = (X̃t)t≥0 with parameters (θ, σ, ν) can be built via X̃t = G+

t − G−t , t ≥ 0, where
G+ = (G+

t )t≥0 is a gamma process with drift µp = (
√

θ2 + 2σ2/ν+θ)/2 and volatility νp = µ2
pν

and G− = (G−t )t≥0 is a gamma process with drift µn = (
√

θ2 + 2σ2/ν − θ)/2 and volatility
νn = µ2

nν, which is independent of G+ (see Madan et al. (1998)).
For risk-neutral modeling purposes, every VG processes X̃ = (X̃t)t≥0 with parameter set
(θ, σ, ν) may be endowed with an additional drift µ ∈ R, resulting in a process X = (Xt)t≥0

given by Xt = µt + X̃t, t ≥ 0. For the remainder of this paper, we will only consider these
extended VG processes, determined by their parameter set (µ, θ, σ, ν).
Sampling the path of a VG process involves sampling gamma processes in either representation.
The standard method for sampling a gamma process G(µ,ν) on a discrete time grid 0 = t0 <

t1 < · · · < tn is to independently draw the increments G
(µ,ν)
ti
−G

(µ,ν)
ti−1

from the corresponding

Gamma((ti − ti−1)µ2

ν , ν
µ) distribution (i ∈ {1, . . . , n}) and accumulate. A second approach,

which was already employed by Dufresne et al. (1991), makes use of the conditional distribution
of G

(µ,ν)
t given G

(µ,ν)
τ1 and G

(µ,ν)
τ2 , the so called ”gamma bridge”, for 0 ≤ τ1 < t < τ2. Since

G
(µ,ν)
t

d= G
(µ,ν)
τ1 + (G(µ,ν)

τ2 − G
(µ,ν)
τ1 )Y, where Y ∼ Beta((t − τ1)µ2

ν , (τ2 − t)µ2

ν ) and Beta(α, β)
denotes the beta distribution, given by the probability density function

fBeta(α,β)(x) =
xα−1(1− x)β−1∫ 1

0 yα−1(1− y)β−1dy
10<x<1 ,

sampling of the gamma process G(µ,ν) on a time grid 0 = t0 < t1 < · · · < tn can be done in
arbitrary order, see Avramidis and L’Ecuyer (2006).
Originally, Avramidis et al. (2003) combined the representation of a VG process as difference
of gamma processes with gamma bridge sampling methods in order to improve efficiency of
Quasi-Monte Carlo techniques for the valuation of Asian options under VG models. The paths
of both gamma processes, G+ and G−, were sequentially generated on a dyadic partition of
length 2m, m ∈ N, for the considered time range [0, T ], i.e. on the discrete time grid (ti)2

m−1
i=0

with t0 = T , t1 = 1
2T , t2 = 1

4T , t3 = 3
4T , t4 = 1

8T , t5 = 3
8T , . . ., t2m−1 = 2m−1

2m T or equivalently

t0 = T , ti = 2(i−2dlog2(1+i)−1e)+1

2dlog2(1+i)e T , i ∈ {0, . . . , 2m − 1}. Later, this simulation method was
extended to arbitrary time sequences (ti)∞i=0, which are dense in [0, T ], and dynamic truncation
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of the simulation procedure after a finite number of steps. Nevertheless, in all numerical
experiments, a dyadic partition was retained, so that fast simulation methods for symmetric
Beta distributions were applicable.
The so called ”difference-of-gammas bridge sampling” (DGBS) provides some interesting bounds
on the simulated VG path: let X = (Xt)t≥0 be an arbitrary VG process given by the difference-
of-gammas representation Xt = µt + G+

t − G−t , t ≥ 0, for µ ∈ R and independent gamma
processes G+ = (G+

t )t≥0, G− = (G−t )t≥0, let µ+ = max{0, µ} and µ− = min{0, µ}. Due to the
monotonicity of G+ and G−, it is obvious that

Lτ2
τ1 := µτ1 + G+

τ1 −G−τ2 + (τ2 − τ1)µ− ≤ Xt ≤ µτ1 + G+
τ2 −G−τ1 + (τ2 − τ1)µ+ =: U τ2

τ1 (1)

holds for all t ∈ [τ1, τ2], 0 ≤ τ1 < τ2, and that these bounds are narrowing with increasing τ1

and decreasing τ2 (cf. Corollary 1, Avramidis and L’Ecuyer (2006)).
In the following section, we will introduce the adaptive DGBS method, which enhances the
(truncated) DGBS method by dynamic modification of the time grid (ti)∞i=0 for the path
discretization, particularly by an adaptive selection of a subgrid (tji)

∞
i=0, ji < ji+1∀i, in order

to skip dispensable simulation steps. The dynamic selection in the adaptive DGBS method
will substantially rely on the bounds provided by (1).

3 Simulating final and extremal values

The truncated DGBS method of Avramidis and L’Ecuyer (2006) is already feasible for the
simulation of minima (infima) and maxima (suprema) of VG processes X with additional drift
term on time intervals [0, T ], T > 0, when neglecting time and memory requirements: given a
tolerance level ε > 0, one could truncate the DGBS procedure when the bounds for X differ
by at most 2ε in all (or at least all ”relevant”) intervals and return the smallest and largest
midpoints of these intervals as minimal and maximal value, diverging from the ”true” minimal
and maximal values by at most ε. In section 5 it can be seen that, apart from speed issues,
huge memory requirements may arise for common values of ε.
The main idea of the adaptive DGBS method (implemented in figure 1 based on a dyadic
partition) is to use the information in the bounds provided by (1) to detect intervals, which
cannot include either minimal or maximal values, and exclude them from further subdivisions.
For this purpose, the algorithm holds a variable bl containing the biggest lower bound for
the supremum and a variable su containing the smallest upper bound for the infimum which
have shown up so far. If su < Lτ2

τ1 ≤ U τ2
τ1 < bl holds for the current interval [τ1, τ2], obvi-

ously inft∈[τ1,τ2] Xt > XT := inft∈[0,T ] Xt and supt∈[τ1,τ2] Xt < XT := supt∈[0,T ] Xt, and the
current interval can therefore be excluded from further considerations. Otherwise, the inter-
val will be included in subsequent subdivions, furthermore bl and su are updated: obviously,
max{Xτ1 , Xτ2} is a lower bound for XT and min{Xτ1 , Xτ2} an upper bound for XT .
To aquire a feasible stopping rule the algorithm holds in similar fashion to bl and su the
biggest upper bound, bu, and the smallest lower bound, sl , seen so far in the current stage (or
depth) of the dyadic partition. At the end of each stage, it is checked whether the difference of
the smallest upper bound su and the smallest lower bound sl as well as the difference between
biggest upper bound bu and biggest lower bound bl stays below 2ε. In this case, the estimators
(sl + su)/2 for the infimum and (bl + bu)/2 for the supremum fulfill the error constraints and
the algorithm terminates. Instead of these estimates, slight modifications are calculated in the
last line of figure 1 to ensure that the estimated infimum will not exceed zero or the final value,

4



Input: σ, ν > 0, µ, θ ∈ R, T > 0, ε > 0, mmax ∈ N
Output: Realisation (x, x, x) of (XT , XT , XT ) for VG process X
a← ν−1; b1← (1

2ν(
√

θ2 + 2σ2/ν + θ))−1; b2← (1
2ν(

√
θ2 + 2σ2/ν − θ))−11

G+
0← 0; G−0← 0; µ+← max{0, µ}; µ−← min{0, µ}2

G+
1← Gamma(Ta, b1) rn; G−1← Gamma(Ta, b2) rn; t0 ← 0; t1 ← T3

su ← min{0, G+
1 −G−1 + t1µ}; bl ← max{0, G+

1 −G−1 + t1µ}4

lint1← 0; rint1← 1; nint ← 1; pos ← 15

for i ∈ {1, . . . ,mmax} do6

linto← lint ; rinto← rint ; ninto← nint ; nint ← 07

sl ← bl ; bu ← su8

for j ∈ {1, . . . ,ninto} do9

pos ← pos + 110

il ← linto
j ; im← pos; ir ← rinto

j ; tim←
til+tir

2 ; δ ← tir−til
2ν11

Y +← Beta(δ, δ) rn; Y −← Beta(δ, δ) rn12

G+
im
← G+

il
+ (G+

ir
−G+

il
)Y +; G−im← G−il + (G−ir −G−il )Y

−
13

for (i−, i+) ∈ {(il, im), (im, ir)} do14

lb ← G+
i−
−G−i+ + ti−µ + (ti+ − ti−)µ−15

ub ← G+
i+
−G−i− + ti−µ + (ti+ − ti−)µ+

16

if (lb < su) or (ub > bl) then17

nint ← nint + 1; lintnint← i−; rintnint← i+18

sl ← min{sl , lb}; bu ← max{bu, ub}19

bl ← max{bl , G+
i−
−G−i− + ti−µ,G+

i+
−G−i+ + ti+µ}20

su ← min{su, G+
i−
−G−i− + ti−µ,G+

i+
−G−i+ + ti+µ}21

if max{su − sl , bu − bl} < 2ε then break22

x ← G+
1 −G−1 + Tµ23

x ← min{0, 1
2(su + sl), x}; x ← max{0, 1

2(bu + bl), x}24

Figure 1: Simulation of (XT , XT , XT ) for VG processes with drift

and that the supremum will not fall below zero or the final value. Obviously, the correction of
these simulation artifacts may only decrease the approximation error.
Figure 2 illustrates a typical run of the simulation algorithm of figure 1 (for the process pa-
rameters, see section 5). The maximum depth of the dyadic partion, which is usually set large
enough to never come into effect for real applications, is set to 9 here for illustrational pur-
poses. The shaded regions visualize the bounds for the process subpaths, particularly for the
infimum and the supremum. Process values are generated with bridge sampling only at the
positions marked by filled circles. The filled regions of the bar at the lower border denote the
subintervals which have to be divided in the next stage of the dyadic partition. It can be seen
that most of the subintervals can be excluded from subdivisions very early, so the workload
is reduced to a small fraction of the workload for full dimensional sampling. Details on the
performance of the algorithm are provided in section 5.
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Figure 2: Simulation steps for VG process with drift
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4 Application to option pricing

For option valuation, we rely on a risk-neutral approach based on general equilibrium argu-
ments, which was already used by Madan et al. (1998) to derive valuation formulas for vanilla
options under the VG model. In this setting, the risk-neutral asset price process S = (St)t≥0

is defined by
St = S0e

Xt , (2)

where X = (Xt)t≥0 follows a VG process with parameter set (µ, θ, σ, ν). The drift µ is deter-
mined by µ = ω + r − q, where r is the risk-free interest rate, q the continuously compounded
dividend yield, and ω = ln(1 − θν − σ2ν/2)/ν the compensator, which assures that the dis-
counted value of the asset is a martingale, in particular E(St) = S0e

(r−q)t (see Avramidis and
L’Ecuyer (2006)).
The simulation procedure for final, minimal and maximal values of VG processes with drift
from section 3 provides in principle a Monte Carlo valuation method for options with payoffs
depending only on final, minimal and maximal values of the underlying: given a sample of n
triplets (xi, xi, xi) of the final value xi at time T > 0, the minimal value xi and maximal value
xi up to time T of the VG process, the corresponding sample (si, si, si) from the price process
is easily calculated using (2), and the fair price Ĉ of the option can be estimated as mean
discounted payoff via

Ĉ = e−rT · 1
n

n∑
i=1

Payoff(si, si, si) . (3)

For lookback options, Avramidis and L’Ecuyer (2006), who focus on efficiency gains through
applications of Quasi-MC methods, truncate their DGBS procedure quite early after a fixed
number of steps and correct for a big amount of the thereby catched simulation bias with
extrapolation methods. With the adaptive DGBS method from section 3, early truncation is
not required, in particular, lookback and swing options can be valuated with negligible bias by
setting the tolerance level of the simulation procedure sufficiently small.
Avramidis and L’Ecuyer (2006) exploit the special payoff structure of barrier options to trun-
cate the DGBS method as early as possible, obtaining huge efficiency gains in comparison to
full path discretization with m∗ = 2k∗ equally spaced points while obtaining the same accuracy.
The computational effort of their method grows only linearly in k∗ = log2(m∗) compared to
m∗ for the full discretization method, but a (small) bias still appears by occasionally reaching
m∗ before the corresponding payoff is determined. Avramidis and L’Ecuyer again use some ex-
trapolation techniques to reduce this bias. Applying the adaptive DGBS method of section 3 to
similar truncation criteria results in a completely unbiased estimation, because there is no need
to restrict the algorithm to a practically relevant maximum number of discretization points
m∗, instead the algorithm continues until the corresponding (exact) payoff is determined.
The algorithm in figure 3 implements the adaptive DGBS method for valuation of general
barrier options with continuous reset conditions under VG models (for the efficient calculation
of mean and se in lines 29–30, see Knuth (1998), p. 232). Some parts of the algorithm depend
on particular option characteristics, e.g. put/call, single/double barrier, down-in/down-out,
up-in/up-out. Table 1 summarizes the different fragments which have to be pasted into figure
3. In a first step, it is checked whether a positive payoff is still possible after sampling the
final process value and obtaining the first lower and upper process bounds (line 8). In this
case, the adaptive DGBS procedure is started. After each bridge sampling step, the knock-in
and knock-out conditions (depending on the option type) are inspected, and the algorithm
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terminates if these conditions are fulfilled. The bounds for the process subpaths now provide
the information on which of the subintervals may contain barrier crossings and therefore have
to be considered for further bridge sampling steps. Examples for the application to up-and-out
calls are given in figures 4 (knock-out case) and 5 (no knock-out case).

Input: σ, ν, T > 0, θ ∈ R, r, q ∈ R, n, mmax ∈ N, option parameter set Θ
Output: Estimator (mean) with standard error (se) for price of (single or double)

barrier option under VG process
µ ← r + 1

ν ln(1− θν − 1
2σ2ν)− q; mean← 0; squares← 01

a← ν−1; b1← (1
2ν(

√
θ2 + 2σ2/ν + θ))−1; b2← (1

2ν(
√

θ2 + 2σ2/ν − θ))−12

G+
0← 0; G−0← 0; µ+← max{0, µ}; µ−← min{0, µ}3

for k ∈ {1, . . . , n} do4

G+
1← Gamma(Ta, b1) rn; G−1← Gamma(Ta, b2) rn; t0 ← 0; t1 ← T5

x ← G+
1 −G−1 + Tµ6

lint1← 0; rint1← 1; nint ← 1; pos ← 17

if initial conditions met for Θ then8

in ← true; done ← false9

for i ∈ {1, . . . ,mmax} do10

linto← lint ; rinto← rint ; ninto← nint ; nint ← 011

for j ∈ {1, . . . ,ninto} do12

pos ← pos + 113

il ← linto
j ; im← pos; ir ← rinto

j ; tim←
til+tir

2 ; δ ← tir−til
2ν14

Y +← Beta(δ, δ) rn; Y −← Beta(δ, δ) rn15

G+
im
← G+

il
+ (G+

ir
−G+

il
)Y +; G−im← G−il + (G−ir −G−il )Y

−
16

for (i−, i+) ∈ {(il, im), (im, ir)} do17

lb ← G+
i−
−G−i+ + ti−µ + (ti+ − ti−)µ−18

ub ← G+
i+
−G−i− + ti−µ + (ti+ − ti−)µ+

19

if knock-out conditions met for Θ then20

done ← true; in ← false; break21

if knock-in conditions met for Θ then22

done ← true; break23

if current interval relevant for Θ then24

nint ← nint + 1; lintnint← i−; rintnint← i+25

if (done = true) or (nint = 0) then break26

if knock-in conditions not met for Θ then in ← false27

if in = true then po← Payoff(x,Θ) else po← 028

delta ← e−rT · po −mean; mean← mean + delta/k29

squares← squares + delta · (e−rT · po −mean)30

se ←
√

squares/(N(N − 1))31

Figure 3: MC valuation of barrier options under VG processes
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line condition type/payoff option characteristic condition/value

8 initial conditions put S0e
x ≤ K

(every relevant call S0e
x ≥ K

condition must hold) up-in / up-out G+
1 + Tµ+ > ln Bu

S0

down-in / down-out G+
1 − Tµ− < ln Bl

S0

19 knock-in conditions up-in lb > ln Bu
S0

(every relevant down-in ub < ln Bl
S0

condition must hold)

21, knock-out conditions up-out lb > ln Bu
S0

26 (at least one relevant down-out ub < ln Bl
S0

condition must hold)

23 relevance conditions up-in / up-out ub > ln Bu
S0

(at least one relevant down-in / down-out lb < ln Bl
S0

condition must hold)

28, Payoff(x,Θ) put max{0,K − S0e
x}

29 call max{0, S0e
x −K}

Table 1: Conditions/payoffs for figure 3
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Figure 4: Simulation steps for barrier option payoff (no knock-out)
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Figure 5: Simulation steps for barrier option payoff (knock-out)
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5 Performance

In this section, the performance of the algorithms in figure 1 and figure 3 will be analysed and
compared to related methods, including some of the MC methods introduced in Avramidis
and L’Ecuyer (2006), using the same VG model/option parameters, in particular σ = 0.1927,
ν = 0.2505, θ = −0.2859, T = 0.40504, r = 0.0548, q = 0, S0 = 100, furthermore for the
up-and-in call K = 100 and Bu = 120. The corresponding additional drift term of the VG
process results in µ = 0.31356.
In a first analysis, we examine the efficiency gain of the adaptive DGBS method for the simula-
tion of final, minimal and maximal values of VG processes (figure 1) compared to (truncated)
full dimensional path sampling. For this purpose, we simulate N = 107 triplets for tolerance
levels ε = 10−i, i ∈ {2, 6, 10, 14}, with adaptive DGBS. We calculate the average number of
simulated points per path for adaptive DGBS as well as the average number of simulated points

for the truncated full dimensional sampling with exactly the same accuracy, i.e. 1
N

∑N
j=1 2k

(i)
j ,

where k
(i)
j is the depth of the dyadic partition where adaptive DGBS stops in the jth simu-

lation run for tolerance level 10−i. The results, including the efficiency gain for the adaptive
DGBS method (calculated as the ratio of average number for truncated full dimensional path
sampling to average number for adaptive DGBS), are summarized in table 2. It can be seen
that large efficiency gains are obtained even for moderate error bounds ε.

tolerance level ε 10−2 10−6 10−10 10−14

adaptive DGBS 16.32 50.44 76.40 102.30
truncated full dim. sampling 105.44 2.47 · 105 2.01 · 109 1.64 · 1013

efficiency gain 6.46 4.90 · 103 2.63 · 107 1.60 · 1011

Table 2: Comparison of average number of simulated points per path (adaptive DGBS vs.
truncated full dimensional sampling)

Obviously, the bias of Monte Carlo option valuation for floating strike lookback call options
with discounted payoff e−rT (ST − inf0≤t≤T St) based on adaptive DGBS with tolerance level
ε can not exceed S0e

−rT ε, since St = S0e
Xt and inf0≤t≤T Xt is simulated with error smaller

than ε, furthermore inf0≤t≤T Xt < 0 and therefore applying the exponential function reduces
the error in einf0≤t≤T Xt . Probably the bias is much smaller, because there are no apparent
reasons for the error to be systematic. Avramidis and L’Ecuyer (2006) applied extrapolation
techniques to reduce the bias for their lookback option pricing method to about 10−4 with
DGBS and 256 simulated points per path. As table 2 shows, the corresponding tolerance level
of about 10−6 for the VG process can be reached with 50.44 simulated points in average when
applying adaptive DGBS. Furthermore, if a workload of 102.30 points per path (in average)
is feasible, the simulation bias for the option value reduces to less then 10−12 when applying
adaptive DGBS.
In a second analysis, we compare the expected truncation value (which corresponds to the
number of simulated points per path) for the truncated DGBS method when applied to barrier
options (Avramidis and L’Ecuyer (2006), table 1), to the expected truncation number for the
adaptive DGBS method (figure 3). While the computational effort of the truncated DGBS
method grows roughly linear in k∗ = log2(m∗), where m∗ is the maximum number of points
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which may be simulated per path, the computational effort of the adaptive DGBS method
stabilizes for k∗ ≥ 8. The results are illustrated in figure 6.
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Figure 6: Estimated expected truncation values (up-and-in call) for adaptive and truncated
DGBS

To measure the speed and to verify the correctness of the proposed techniques, the simulation
method for final and extremal values (figure 1) and the Monte Carlo valuation method for
barrier options (figure 3) were implemented in C, using the random number facilities and the
data management of the statistical computing language R (R Development Core Team (2007)).
For the generation of Beta(a, a) random numbers, a combination of two methods is used, more
precisely the method of Devroye (1986, p. 437) for a > 1

2 and the method of Devroye (1996)
for 0 < a ≤ 1

2 .
For the valuation of lookback options, the simulation of either the infimum or supremum is
dispensible. For this application, the algorithm of figure 1 can be simplified in an obvious
manner for speed improvements. When applying our algorithms to the examples in Avramidis
and L’Ecuyer (2006), we are able to fully reproduce the reference prices. Table 3 summarizes
the results and the speed of the proposed methods (Pentium D 3.0GHz, 1 core, Windows XP).
Apart from the saving of computation time, memory requirements are an issue both for look-
back and barrier options when applying the truncated DGBS method. Since m∗ values of
the two gamma processes G+ and G− must be stored for the regular DGBS method, mem-
ory allocation of at least 16 ·m∗ bytes is necessary. The dyadic partitioning in the adaptive
DGBS method for completely unbiased barrier option valuation (figure 3) occasionally reached
depths greater than 30, which corresponds to memory requirements of more than 16 GB for the
truncated DGBS method, which is not feasible on standard PCs. In comparison, the memory
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option type # samples price estimate est. std. deviation payoffs/sec.

lookback call (ε = 10−6) 5 · 108 9.39827 0.0003244 11,350
up-and-in call 1 · 1010 2.15705 0.0000709 323,562
swing (ε = 10−6) 1 · 107 17.07974 0.0025971 6,506

Table 3: Results and speed of adaptive DGBS for option valuation

requirement of the adaptive DGBS method was about 14 KB. Due to the small memory and
time requirements of the adaptive DGBS method, the maximum truncation number can be set
to values that are very unlikely to be ever reached, e.g. 2256.
We didn’t investigate in performance comparisons to the methods introduced by Ribeiro and
Webber (2006), who claimed to correct for simulation bias in the Monte Carlo valuation of
barrier options by applying gamma bridge sampling to the subordinating gamma process and
exploiting well-known results of the distribution of the maximum of a Brownian bridge. Because
of a mistake in the derivation of their results, they overlook that the proposed method is not
applicable to VG processes (nor to NIG processes, which they also considered). Experimentally
applying their method to the examples considered in Ribeiro and Webber (2006) results in an
’overcorrection’ and amplifies the bias to a 15−142 times higher bias in the opposite direction,
see Becker (2007).

6 Summary

In this paper, we proposed fast and unbiased Monte Carlo methods for the valuation of look-
back, swing, and barrier options under variance gamma models. As a by-product, a fast
method was developed for the simulation of final value, infimum, and supremum of variance
gamma processes including an additional drift term, which is exact up to arbitrarily small a
priori precision bounds.
The key ingredient of our algorithms is the newly introduced adaptive difference-of-gammas
bridge sampling method, an enhanced version of the (truncated) difference-of-gammas bridge
sampling procedure, which was originally established by Avramidis et al. (2003). For Monte
Carlo lookback and barrier option valuation, our performance measurements showed consid-
erable reductions in computional effort and memory requirements, in particular for small pre-
cision bounds ε. Therefore, a priori bounds ε close to machine precision level are perfectly
feasible, which constitutes the fundament of our effectively unbiased valuation methods.
Avramidis and L’Ecuyer (2006) focused on further efficiency improvements by applying Quasi-
Monte Carlo techniques for variance reduction. They observed considerable efficiency gains
compared to pure Monte Carlo methods for their valuation procedures based on truncated
difference-of-gammas bridge sampling. Variance reducing techniques, in particular importance
sampling and Quasi-Monte Carlo methods, should in principle be applicable for our methods
based on adaptive difference-of-gammas bridge sampling as well. A detailed analysis of possible
efficiency gains is left to further studies.
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