
Exact simulation of final, minimal and maximal values of

Brownian Motion and jump-diffusions with applications to

option pricing

Martin Becker∗

Saarland University, Saarbrücken, Germany

05.10.2007

Abstract

We introduce a method for generating (W
(µ,σ)
x,T , m

(µ,σ)
x,T , M

(µ,σ)
x,T), where W

(µ,σ)
x,T denotes

the final value of a Brownian motion starting in x with drift µ and volatility σ at some
final time T , m

(µ,σ)
x,T = inf0≤t≤T W

(µ,σ)
x,t and M

(µ,σ)
x,T = sup0≤t≤T W

(µ,σ)
x,t .

By using the trivariate distribution of (W
(µ,σ)
x,T , m

(µ,σ)
x,T , M

(µ,σ)
x,T), we obtain a fast method

which is unaffected by the well-known random walk approximation errors. The method
is extended to jump-diffusion models.
As sample applications we include Monte Carlo pricing methods for European double
barrier knock-out calls with continuous reset conditions under both models. The proposed
methods feature simple importance sampling techniques for variance reduction.

Keywords: Brownian Motion, Monte Carlo simulation, jump-diffusions, double barrier
options, importance sampling

1 Introduction

”Unfortunately, Monte Carlo simulations, which usually provide a flexible and easy
approach, do not perform well in the context of barrier options.”

As stated in [BaCaIo99], the bad performance of Monte Carlo simulations in this setting
is due to the lack of reliable methods for generating triplets (W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T), where

W
(µ,σ)
x,T denotes the value of a Brownian motion starting in x with drift µ and volatility σ at

some final time T , m
(µ,σ)
x,T = inf0≤t≤T W

(µ,σ)
x,t and M

(µ,σ)
x,T = sup0≤t≤T W

(µ,σ)
x,t . The standard

methods rely on a discrete N -step random walk approximation of the Brownian motion. Using
normally distributed increments, the path of the Brownian motion is sampled at discrete times
t = 0, 1

N T, . . . , N−1
N T, T without bias. The minimal and maximal value are then calculated as

running minimum resp. maximum of all N +1 values. Figure 1 illustrates the bias induced by
this procedure for a typical random walk approximation run. Minimal and maximal value are
over– resp. underestimated with probability 1, and — as it can be seen in figure 1 — the bias
for N = 365 can be remarkably high.
[BaCaIo99] give a survey of attempts to improve the performance of Monte Carlo methods
for pricing barrier options in geometric Brownian motion models with the help of Brownian
bridge concepts1. The key idea of these attempts is to use a Brownian bridge for evaluating
the probability that the Brownian motion breaches the barrier during a simulation step. They
conclude:

∗Tel.: +49 681 302 3571 Fax.: +49 681 302 3551 Address: Saarland University, Im Stadtwald, Building
C3.1, Room 206, 66123 Saarbrücken, email: martin.becker@mx.uni-saarland.de

1Brownian bridge concepts have also been used in [MeAt02] for Merton jump-diffusion models.

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Random walk (365 steps) approximation error (example)

t

X
t

BM running max.
RW running max.
RW running min.
BM running min.
RW approximation

Figure 1: Random walk approximation error for minimum and maximum of Brownian motion.
Approximate running minimum/maxium (thin lines) based on 365 step random walk inter-
polation, running minimum/maximum of corresponding Brownian motion path (thick lines)
simulated with algorithm 1.

”However the above-mentioned authors are limited to those situations in which this
probability is known exactly (i.e., one single constant barrier). In particular, cases
of interest such as double barriers (possibly time-dependent) cannot be treated.”

To overcome some of these limitations, we introduce a fast and unbiased method for generating
(W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T), relying on the joint distribution of (W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T), which is

given e.g. in [BoSa02]. This method is extended to jump-diffusion models.
Possible applications for triplets generated with our method include option pricing in geo-
metric Brownian motion and Merton jump-diffusion models, but are not restricted to them.
Other applications which use the information contained in final, minimal and maximal values of
price processes are volatility/covariance estimation (e.g. [Par80], [GaKl80], [Bec83], [BaTo84],
[RoSa91], [YaZh00], [BrDi06], [RoZh07]) and specification tests (e.g. [BeFrKlSK07], [Klö06],
[Klö07]). In these contexts, simulation can be used for performance measurements of estima-
tors and power studies of statistical tests.
The remainder is organized as follows: in section 2, we derive the proposed simulation method
for (W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T). Section 3 contains the extension of the new method to jump-

diffusion models. In section 4, the proposed methods are adapted to Monte Carlo option
valuation, in particular with respect to European continously monitored constant double bar-
rier knock-out calls in geometric Brownian motion and Merton jump-diffusion frameworks.
Section 5 gives a short summary of the results.

2 Simulation method for Brownian motion

The proposed simulation method relies on a sequential generation procedure of final, minimal
and maximal value based on univariate (conditional) distributions. The first two components
can be generated very fast with the unconditional distribution of final value and the conditional

2

distribution of minimal value given final value. The conditional distribution of the third
component (maximal value) given both other components is more complicated, but tractable
with numerical methods.
Before we turn to the univariate distributions, we simplify the problem by eliminating some
parameters. Considering scaling properties of the Brownian motion, it is sufficient to generate
triplets of (W (µ̃,1)

0,1 ,m
(µ̃,1)
0,1 ,M

(µ̃,1)
0,1) for arbitrary µ̃, because

W
(µ,σ)
x,t

d= x + σ
√

TW
(
√

T µ
σ ,1)

0, t
T

and thus

(W (µ,σ)
x,T ,m

(µ,σ)
x,T ,M

(µ,σ)
x,T) d= (x + σ

√
TW

(
√

T µ
σ ,1)

0,1 , x + σ
√

Tm
(
√

T µ
σ ,1)

0,1 , x + σ
√

TM
(
√

T µ
σ ,1)

0,1) ,

cf. [BoSa02, p. 68].
To simplify notation, we write for a given µ̃

(Z,A,B) := (W (µ̃),m(µ̃),M (µ̃)) := (W (µ̃,1)
0,1 ,m

(µ̃,1)
0,1 ,M

(µ̃,1)
0,1) .

The (unconditional) univariate distribution of the final value Z is given e.g. in [BoSa02, 1.0.6,
p. 250] as

P (Z ∈ dz) =
1√
2π

e−(z−µ̃)2/2dz ,

i.e. Z ∼ N(µ̃, 1), FZ(z) = Φ(z − µ̃) and F−1
Z (u) = µ̃ + Φ−1(u), where Φ(·) denotes the

cumulative distribution function (cdf) of the standard normal distribution.
The conditional univariate cdf of the minimal value A given the final value Z can easily be
deduced from [BoSa02, 1.2.8., p. 252]. For a ≤ 0,

P (A ≤ a;Z ∈ dz) =
1√
2π

eµ̃z−µ̃2/2−(|z−a|−a)2/2dz

=


1√
2π

e−(z−µ̃)2/2dz · e−2a(a−z) : a ≤ min(0, z)
1√
2π

e−(z−µ̃)2/2dz : a > min(0, z)
,

and thus

FA|Z=z(a) =
{

e−2a(a−z) : a ≤ min(0, z)
1 : a > min(0, z)

and F−1
A|Z=z(u) =

z

2
−

√
z2

4
− lnu

2
.

The trivariate distribution of final, minimal and maximal value is given e.g. in [BoSa02, 1.15.8,
p. 271]. For a < min(0, z) ≤ max(0, z) < b:

P (a < A,B < b, Z ∈ dz) =

1√
2π

eµ̃z−µ̃2/2
∞∑

k=−∞

(
e−(z+2k(b−a))2/2 − e−(z−2a+2k(b−a))2/2

)
dz .

Differentiation w.r.t. a leads to

P (A ∈ da,B < b, Z ∈ dz) =

1√
2π

eµ̃z−µ̃2/2
∞∑

k=−∞

(
2(k + 1)(z − 2a + 2k(b− a))e−(z−2a+2k(b−a))2/2

− 2k(z + 2k(b− a))e−(z+2k(b−a))2/2
)

dzda

for a < min(0, z) ≤ max(0, z) < b.

3

The cdf of maximal value B given final value Z and minimal value A can now be deduced by
division by the bivariate probability density function (pdf) of final and minimal value, which
is the result of differencing P (A ≤ a;Z ∈ dz) w.r.t. a:

fZ,A(z, a) =
1√
2π

e−(z−µ̃)2/2 · 2(z − 2a) · e−2a(a−z)

The required univariate cdf of maximal value B given final and minimal value (Z,A) for
a < min(0, z) ≤ max(0, z) < b results in:

FB|Z=z,A=a(b) =
ez2/2+2a(a−z)

z − 2a

∞∑
k=−∞

(
(k + 1)(z − 2a + 2k(b− a))e−(z−2a+2k(b−a))2/2

−k(z + 2k(b− a))e−(z+2k(b−a))2/2
)

.

Differentiation w.r.t. b yields the pdf:

fB|Z=z,A=a(b) =
ez2/2+2a(a−z)

z − 2a

∞∑
k=−∞

(
−2k2(1− (z + 2k(b− a))2)e−(z+2k(b−a))2/2

+2k(k + 1)(1− (z − 2a + 2k(b− a))2)e−(z−2a+2k(b−a))2/2
)

for a < min(0, z) ≤ max(0, z) < b.
It is remarkable that neither FA|Z=z(a) nor FB|Z=z,A=a(b) resp. fB|Z=z,A=a(b) depend directly
on µ̃ (of course, there is an indirect impact of µ̃, because the realisation z of Z depends on µ̃).
Triplets of (Z,A,B) can now be simulated with a multivariate method of inversion: At first, a
realisation z of Z is generated either by using a well-known method for normally distributed
(pseudo-)random numbers (prn) or by computing the inverse cdf F−1

Z for U [0, 1]-distributed
prn. In the second step, the realisation a of A can easily be generated by inversion method
(from U [0, 1]-distributed prn applied to FA|Z=z), as F−1

A|Z=z has a simple closed-form expres-
sion. The last step, applying the inversion method again to FB|Z=z,A=a, is computationally
most burdensome, since the analytical form of FB|Z=z,A=a contains a series. Evaluation and
inversion of FB|Z=z,A=a therefore has to be done numerically. Before we focus on this topic,
we summarize the simulation procedure in algorithm 1.

Algorithm 1: Simulation of (W (µ,σ)
x,T ,m

(µ,σ)
x,T ,M

(µ,σ)
x,T)

Input: x ∈ R, µ ∈ R, σ > 0, T > 0, ε > 0
Output: realisation (z, a, b) of (W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T)

µ̃ ←
√

T µ
σ ;1

(independently) draw U (0, 1)-distributed prn u1, u2, u3;2

z̃ ← Φ−1(u1) + µ̃;3

ã ← F−1
A|Z=z̃(u2) = z̃

2 −
√

z̃2

4 −
ln u2

2 ;4

b̃ ← F−1
B|Z=z̃,A=ã(u3);5

(z, a, b)← (x +
√

Tσz̃, x +
√

Tσã, x +
√

Tσb̃);6

The evaluation of FB|Z=z,A=a has to be done by approximating the series. Since the terms in
the series decrease with increasing |k|, the evaluation of the sum is stopped when the summands
fall below a given bound. Mainly depending on b− a, bounds of e.g. 10−12 are mostly reached
for very small |k| (see figure 2).

4

Empirical distribution of number of evaluated summands,105 evaluations, bound 10−−12

number of evaluated summands

fr
eq

ue
nc

y

1016 1427

12164

21443 21875

19458

11711

6552

2700

983
436 182 44 6 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0
5

00
0

10
 0

00
15

 0
00

20
 0

00
25

 0
00

Figure 2: Empirical distribution of number of evaluated terms in series approximation of
FB|Z=z,A=a based on 105 evaluations with bound 10−12.

To avoid numerical instabilities concerning the evaluation of ez2/2, which emerge for large |z|,
FB|Z=z,A=a and fB|Z=z,A=a have to be written as

FB|Z=z,A=a(b) =
e2a(a−z)

z − 2a

∞∑
k=−∞

(
(k + 1)(z − 2a + 2k(b− a))e−(z−2a+2k(b−a))2/2+z2/2

−k(z + 2k(b− a))e−(z+2k(b−a))2/2+z2/2
)

for a < min(0, z) ≤ max(0, z) < b and

fB|Z=z,A=a(b) =
e2a(a−z)

z − 2a

∞∑
k=−∞

(
−2k2(1− (z + 2k(b− a))2)e−(z+2k(b−a))2/2+z2/2

+2k(k + 1)(1− (z − 2a + 2k(b− a))2)e−(z−2a+2k(b−a))2/2+z2/2
)

for a < min(0, z) ≤ max(0, z) < b , resp..
For the inversion of FB|Z=z,A=a, a Newton-type algorithm is feasible, since the pdf fB|Z=z,A=a

is available. To find a starting value for the Newton iteration, we use our knowledge of the
distribution of B conditional on Z (unconditional w.r.t. A): From [BoSa02, 1.1.8, p. 251], we
have for b ≥ 0

P (B ≥ b;Z ∈ dz) =
1√
2π

eµ̃z−µ̃2/2−(|z−b|+b)2/2dz ,

and get — repeating the calculation we did for FA|Z=z —

FB|Z=z(b) =
{

1− e−2b(b−z) : b ≥ max(0, z)
0 : b < max(0, z)

and F−1
B|Z=z(u) =

z

2
+

√
z2

4
− ln(1− u)

2
.

As an ad-hoc improvement we propose the following slight modification, which takes the

5

dependence on A into account again:

b̄(z, a, u) =
ln(1

z+−a)+

2
+

z

2
+

√
z2

4
−

(1 + ln(1 + a2

|z|+0.01)) ln(1− u)

2

The resulting initial values for the Newton-iteration perform remarkably well (see figure 3).
From scratch, we know F−1

B|Z=z,A=a is located in [max(z, 0),∞), and because of the monotony

Empirical distribution of number of Newton steps,105 runs, tolerance level 10−−8

number of Newton steps

fr
eq

ue
nc

y

0 180

7981

27349
28273

21244

9750

3802

1080
257 63 14 7

1 2 3 4 5 6 7 8 9 10 11 12 13

0
10

 0
00

20
 0

00
30

 0
00

40
 0

00

Figure 3: Empirical distribution of Newton-step numbers for 105 runs with tolerance level
ε = 10−8, initial values for Newton iterations by ad-hoc method.

of F−1
B|Z=z,A=a, we can shorten this interval in following Newton iterations. If a Newton

step would leave the interval, we may force it to stay within. The Newton-type inversion is
summarized in algorithm 2.

Based on algorithm 2, a significant speed improvement can be achieved at the cost of some
memory (and a fix amount of cpu time required for initialization), if many realisations of
(W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T) for similar values of µ̃ =

√
T µ

σ are to be generated. The speed im-
provement is accomplished by calculating the initial values for the Newton iterations with the
help of a multidimensional linear interpolation based on values of F−1

B|Z=z,A=a(u) evaluated at
a suitable grid. As an example for applications with a small µ̃, the following choice for the
grid performs well:

• z ∈ {−5,−4.9,−4.8, . . . , 4.8, 4.9, 5.0} (101 nodes)

• a−min{0, z} ∈ {−1.976, ,−1.951,−1.926, . . . ,−0.051,−0.026,−0.001} (80 nodes)

• u ∈ {0.002, 0.014, 0.026, . . . , 0.974, 0.986, 0.998} (84 nodes)

In the initialisation procedure for this example, 101 · 80 · 84 = 678720 inversions have to be
done, the memory requirement is approx. 5.18 MByte. Figure 4 illustrates the speed increase
on a Pentium D 3.2GHz Linux system (one cpu core used). The observable reduction in cpu

6

Algorithm 2: Evaluation of F−1
B|Z=z,A=a

Input: ε > 0, 0 < u < 1, z, a ∈ R where a ≤ min{z, 0}
Output: approximation b of F−1

B|Z=z,A=a(u) having |F−1
B|Z=z,A=a(u)− b| < ε

l ← max{0, z}; r ← +∞;1

xn ←
ln(1

z+−a
)+

2 + z
2 +

√
z2

4 −
(1+ln(1+ a2

|z|+0.01)) ln(1−u)

2 ;2

repeat3

xo ← xn;4

f ← fB|Z=z,A=a(xo);5

F ← FB|Z=z,A=a(xo);6

if F < u then l ← xo else r ← xo;7

xn ← xo − F−u
f ;8

if xn /∈ (l, r) then9

if r <∞ then xn ← l+r
2 else xn ← 1.2 · (l + 0.1);10

until |xn − xo| < ε ;11

b ← xn+xo

2 ;12

0
50

10
0

15
0

Cpu time (107 triplets) for different tolerance levels

tolerance level

cp
u

tim
e

●

●

●
●

●

●

●
●

●

10−−2 10−−3 10−−4 10−−5 10−−6 10−−7 10−−8 10−−9 10−−10

●

initial values by ad−hoc method
initial values by grid interpolation

Figure 4: Required cpu time (per 107 triplets) for different tolerance levels ε. Comparison
of ad-hoc generation and multidimensional linear interpolation for starting values of Newton
iterations.

time consumption is essentially the result of a reduced number of Newton steps due to the
improved initial values. The proposed simulation algorithm (as all other algorithms presented
in this paper) has been implemented as a package for the statistical software R (see [R]). To
increase performance, all time critical parts were written in C. The code has been tested on
several Intel CPUs (OS: Debian Linux) with the speed measurements (initial values by grid
method) given in table 1. On the Pentium D, the performance is measured for one core, using

7

both cores essentially doubles simulation speed.

CPU time for 107 triplets triplets/sec.
Pentium IV 1.6 GHz 168.16 sec. 59 467
Pentium D 3.2 GHz 90.82 sec. 110 108
Xeon 2.7 GHz 87.48 sec. 114 312

Table 1: Speed of simulation for Brownian motion (algorithm 1) on different CPUs (tolerance
level ε = 10−8).

For comparison, we include the speed measurements for generating triplets with a discrete N -
step random walk approximation in table 2. As for the new method, the main code is written
in C, using the standard random number generator of R (Mersenne-Twister) for uniformly
distributed prn.
Ball and Torous have chosen N = 100 000 steps in [BaTo84] ”to simulate a Wiener process
adequately”. For this number of steps, our unbiased method is — depending on CPU type —
roughly 1 800 to 2 750 times faster. For N = 10 000 and N = 5 000 steps, the speed factors
are reduced to approx. 180-275 and 90-140 resp..

CPU steps (N) time for 104 triplets triplets/sec.
Pentium IV 1.6 GHz 100 000 401.04 sec. 25
Pentium IV 1.6 GHz 10 000 40.10 sec. 249
Pentium IV 1.6 GHz 5 000 20.04 sec. 499
Pentium D 3.2 GHz 100 000 251.94 sec. 40
Pentium D 3.2 GHz 10 000 25.18 sec. 397
Pentium D 3.2 GHz 5 000 12.60 sec. 794
Xeon 2.7 GHz 100 000 156.28 sec. 64
Xeon 2.7 GHz 10 000 15.68 sec. 638
Xeon 2.7 GHz 5 000 7.86 sec. 1 272

Table 2: Speed of classical simulation method (random walk approximation) on different CPUs.

3 Extension to jump-diffusion models

The proposed simulation method can easily be extended to more complex models which include
Brownian motion components. A well-known class of these models are Lévy processes of jump-
diffusion type, also denoted as jump-diffusion models, which have the form

Xt = µt + σWt +
Nt∑
i=1

Yi, t ≥ 0,

where (Wt)t≥0 is a Brownian motion, (Nt)t≥0 is a Poisson process (independent of (Wt)t≥0)
with intensity parameter λ counting the jumps of X, and Yi are i.i.d. jump sizes (independent
of (Wt)t≥0 and (Nt)t≥0), see e.g. [CoTa04, p. 111].
Jump diffusions can be understood as Brownian motions which are disrupted by random jump
incidences. Since jump times and jump sizes are independent of the Brownian motion itself,
algorithm 1 can be used for simulation of final and extremal values of the Brownian motion
parts between jumps without modification. For the generation of the jump component, i.e.
the compound poisson processes, see e.g. [CoTa04, p. 174].
Triplets (XT , inf0≤t≤T Xt, sup0≤t≤T Xt) of final and extremal values for jump-diffusions can
then be generated with the procedure in algorithm 3.

8

Algorithm 3: Simulation of (XT , inf0≤t≤T Xt, sup0≤t≤T Xt) for jump diffusions Xt

Input: x, µ ∈ R, λ, σ, T > 0, generator for jump sizes Yi

Output: realisation (z, a, b) of (XT , inf0≤t≤T Xt, sup0≤t≤T Xt) for jump diffusion
Xt

Draw number of jumps n from Poisson distribution with parameter λT ;1

Draw n jump positions t1, . . . , tn independently uniformly distributed on [0, T];2

Sort jump positions t(1) < . . . < t(n);3

t(0)← 0; t(n+1)← T ; x0 ← x;4

for i ∈ {1, . . . , n + 1} do τi ← t(i+1) − t(i);5

/* skip following loop if n = 0 */
for i ∈ {1, . . . , n} do6

(wi,mi,Mi)← realisation of (Wµ,σ
xi−1,τi

,m
(µ,σ)
xi−1,τi ,M

(µ,σ)
xi−1,τi);7

yi ← realisation of Yi (generator provided);8

xi ← wi + yi;9

(wn+1,mn+1,Mn+1)← realisation of (Wµ,σ
xn,τn+1

,m
(µ,σ)
xn,τn+1 ,M

(µ,σ)
xn,τn+1);10

(z, a, b)← (wn+1,mini∈{1,...,n+1} mi,maxi∈{1,...,n+1} Mi);11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Simulation steps for Merton jump−diffusion

t

X
t

t(1) t(2) t(3)t(0) t(4)

x0

y1

M1

m1

w1

x1
y2

M2

m2

w2

x2

y3

M3

m3
w3

x3 M4

m4

w4

max Mi

min mi

n = 3

Figure 5: Typical simulation run for Merton jump-diffusion (algorithm 3).

In the Merton model (see [Mer76]), jump sizes are assumed to have a Gaussian distribution
(i.e. Yi

i.i.d.∼ N(µJ , σ2
J) for µj ∈ R, σJ > 0). Figure 5 visualizes a typical simulation pass

for µ = 0, σ = 1, T = 1, µJ = 0, σJ = 1, λ = 2. The Brownian motion is disrupted by 3
jumps, resulting in 4 applications of algorithm 1 for the simulation of the extremal values of
the Brownian motion parts.

9

4 Application to option pricing

Since fair prices of options are discounted expected payoffs under equivalent martingale mea-
sures, they can be estimated with Monte Carlo methods by simulating under EMM the relevant
characteristics of the underlyings and averaging the resulting discounted payoffs.
For some options, the relevant characteristics are (subsets of) final, minimal and maximal
value. With our proposed simulation method for these characteristics, a tool for unbiased and
fast Monte Carlo pricing is provided.
If the dependence of option payoffs on these characteristics has a special structure (i.e. only
parts of the information in the characteristics is reflected in the option payoffs), the price
estimation can be improved. In the following we demonstrate importance sampling improve-
ments for European continuously monitored constant double barrier knock-out calls, where
dependence of payoffs from maximal and minimal values is limited to the information whether
lower or upper boundaries are crossed or not.
We start with a geometric Brownian motion as price process for the underlying, since we are
able to compare our results with a benchmark given in [GeYo96] for this case. We extend
one of the results for single barrier options in [MeAt02] by turning to Merton jump-diffusions
later.

4.1 Option pricing in geometric Brownian motion models

The payoff X for the considered double barrier call option can be written as

X = (ST −K)+1L<min0≤t≤T St
1max0≤t≤T St<U ,

where L denotes the lower barrier, U the upper barrier and K the strike price at time T
(L < K < U). The price process St of the underlying is assumed to be a geometric Brownian
motion starting in S0 ∈ [L, U] at time t = 0 with drift µ and volatility σ, i.e. under the (in
this case unique) risk-neutral measure (depending on the risk-free interest rate r), St = est

for a Brownian motion st with drift r − σ2

2 and volatility σ starting in s0 = ln S0.
To apply our simulation procedure for Brownian motion, we set

µ̃ :=
√

T
r − σ2

2

σ
, l :=

ln(L)− s0

σ
√

T
, u :=

ln(U)− s0

σ
√

T

and use (Z,A,B) = (W (µ̃),m(µ̃),M (µ̃)) to write the payoff as

Xsim = (es0+σ
√

TZ −K)+1l<A1B<u.

The simple Monte Carlo approach could now be performed as follows:

• Generate N realisations (zi, ai, bi)i=1...N from (Z,A,B).

• For i = 1, . . . , N calculate xi = (es0+σ
√

Tzi −K)+1l<ai1bi<u.

• Estimate fair price as discounted estimated expectation under risk-neutral measure as
ĈK,L,U = e−rT Ê(X) = e−rT · 1

N

∑N
i=1 xi .

The main disadvantage of this procedure is the (potentially large) number of zeros in the
sequence of calculated payoffs xi. Apart from having bad impact on the variance of the
estimation procedure, every time a triplet (zi, ai, bi), where es0+σ

√
Tzi < K, ai < l or bi > u,

is generated, most of the CPU time is vasted, since most of the information in (zi, ai, bi) is
discarded.
In order to reduce variance and increase simulation speed, we restrict the simulation procedure
to the ”important” region, where the payoff xi is not zero. With k := ln(K)−s0

σ
√

T
this region

consists of all triplets (zi, ai, bi) with

l ≤ min(ai, k) ≤ max(ai, k) ≤ zi ≤ bi ≤ u .

10

Of course, the generated (zi, ai, bi) resp. the resulting payoffs xi have to be weighted with a
”likelihood” for fulfilling these conditions.
In the following, we write the expected payoff as an integral, to illustrate how our sequential
simulation method can be applied to improve estimation by importance sampling:

E(X)

=
∫

R

∫
R

∫
R
(es0+σ

√
Tz −K)+1l<a1b<uf(Z,A,B)(z, a, b) db da dz

=
∫ u

k

∫ z

l

∫ u

z

(es0+σ
√

Tz −K)f(Z,A,B)(z, a, b) db da dz

=
∫ u

k

(es0+σ
√

Tz −K)
∫ z

l

∫ u

z

fB|Z=z,A=a(b) db fA|Z=z(a)fZ(z) da dz

=
∫ u

k

(es0+σ
√

Tz −K)
∫ z

l

FB|Z=z,A=a(u)fA|Z=z(a)fZ(z) da dz

=
∫ u

k

(es0+σ
√

Tz −K)
∫ z

l

FB|Z=z,A=a(u)
fA|Z=z(a)
p2(l, z)

p2(l, z)
fZ(z)

p1(k, u)
p1(k, u) da dz ,

where p1(k, u) = FZ(u)− FZ(k) = Φ(u− µ̃)− Φ(k − µ̃) measures the likelihood (probability)
for fulfilling the condition k < zi < u, and — for a given zi ∈ [k, u] — the term p2(l, z) =
FA|Z=z(z) − FA|Z=z(l) = 1 − e−2l(l−z) measures the likelihood for the condition l < ai(< zi)
for a given zi.
f̃k,u(z) := fZ(z)

p1(k,u)1[k,u](z) can be interpreted as a density of Z restricted to the interval [k, u],

whereas f̃l,z(a) := fA|Z=z(a)

p2(l,z) 1[l,z](a) is a density of A|Z = z restricted to [l, z]. In the result-
ing importance sampling method, we draw realisations of Z and A|Z from these truncated
distributions.
The computationally burdensome inversion of FB|Z,A is completely avoided, since the inner-
most part of the integral can be evaluated directly with the cdf FB|Z,A, without the need for
simulating the component bi at all.
The estimation procedure for the option price is summarized in algorithm 4.

Algorithm 4: Double Barrier knock-out call valuation, geometric BM
Input: µ, r ∈ R, σ, T, S0, ε > 0, 0 < L < S0, U > S0, L < K < U , N ∈ N
Output: Estimator ĈK,L,U of call price

s0← ln(S0); µ̃←
√

T
r−σ2

2
σ ; l ← ln(L)−s0

σ
√

T
; u← ln(U)−s0

σ
√

T
; k ← ln(K)−s0

σ
√

T
;1

pzm
← Φ(k − µ̃); pzM

← Φ(u− µ̃); p1 ← pzM
− pzm

;2

for i ∈ {1, . . . , N} do3

(independently) draw U (0, 1)-distributed prn u1, u2;4

zi ← µ̃ + Φ−1(pzm + u1(pzM
− pzm)); /* zi ∈ [k, u] */5

p2 ← 1− e−2l(l−zi);6

ai ← zi

2 −
√

z2
i

4 −
ln(u2·p2)

2 ; /* ai ∈ [l, zi] */7

p3 ← FB|Z=zi,A=ai
(u) (with tolerance ε);8

xi ← (es0+σ
√

Tzi −K) · p1 · p2 · p3;9

ĈK,L,U ← e−rT 1
N

∑N
i=1 xi;10

In table 3, we compare the accuracy of our new Monte Carlo pricing method to the results
in [GeYo96]. In [GeYo96], different pricing methods for European continuously monitored
constant double barrier knock-out calls — including a standard Monte Carlo method based
on random-walk approximation — were compared for three different parameter sets. For all

11

considered call options, T = 1 and S0 = 2.

σ = 0.2, r = 0.02, σ = 0.5, r = 0.05, σ = 0.5, r = 0.05,

Pricing method K = 2, K = 2, K = 1.75,

L = 1.5, U = 2.5 L = 1.5, U = 3 L = 1, U = 3

Geman-Yor 0.0411 0.0178 0.07615
Kunitomo-Ikeda 0.041089 0.017856 0.076172
Old MC 0.0425 0.0191 0.0772
est. st.dev. 0.0030 0.0030 0.0030
New MC, 106 draws 0.04109369 0.01785189 0.07616213
est. st.dev. 0.00002466 0.00001482 0.00005738
New MC, 108 draws 0.04108519 0.01785838 0.07616824
est. st.dev. 0.00000247 0.00000148 0.00000574

Table 3: Estimation results for geometric Brownian motion, compared to [GeYo96]. The
values for the first three methods are adopted from [GeYo96], p. 1236.

As expected, there is no significant bias in our results. The computation speed is approx.
350 000 draws per second on a Xeon 2.7 GHz CPU. The estimation based on 106 draws was
done in 3 seconds.

4.2 Option pricing in Merton jump-diffusion models

The extension of the importance sampling techniques to options, where the log-price of the
underlying follows a Merton jump-diffusion, is straightforward2: for the last part of the log-
price-process (the Brownian motion component after the last jump), we can adopt the proce-
dure without changes. For the other parts, which consist of a Brownian motion with a jump
at the end, we have to change the procedure in the following manner:

• The Brownian motion must not leave the interval [l, u], but the final value may fall below
k. So, performing the importance sampling, we have to change k to l.

• In order to avoid a knock out, the jump size has to be adjusted in such a way, that
the log-price-process does not leave the interval [l, u]. This is again done by importance
sampling of the jump size.

This extension of the importance sampling techniques for Brownian motion to jump diffusions
ensures that the barriers are neither crossed by the Brownian motion parts nor by the jumps.
So, positive payoffs — weighted with the appropriate likelihood ratios — are attained in every
iteration.
Note that Merton jump-diffusion models lead to incomplete markets, so there is no unique
EMM any more. Since the discussion of option pricing in incomplete markets is far beyond the
scope of this example, we simply adopt the choice from [Mer76] without further investigations.
The method is summarized in algorithm 5. The likelihood ratio lr is initialized in line number
8. The inner for-loop (lines 9–19) covers all but the last Brownian motion parts (and the
adjacent jumps), the last Brownian motion part is addressed separately in lines 20–28.

2Importance sampling techniques for single barrier options in Merton jump-diffusion models were also
applied in [JoLe07].

12

Algorithm 5: Double Barrier knock-out call valuation, Merton jump-diffusion
Input: µ, µJ , r ∈ R, σ, σJ , λ, T, S0, ε > 0, 0 < L < S0 < U , L < K < U , N ∈ N
Output: Estimator ĈK,L,U of call price
s0 ← ln(S0);1

for i ∈ {1, . . . , N} do2

Draw number of jumps n from Poisson distribution with parameter λT ;3

Draw n jump positions t1, . . . , tn independently uniformly distributed on [0, T];4

Sort jump positions t(1) < . . . < t(n);5

t(0)← 0; t(n+1)← T ;6

for i ∈ {1, . . . , n + 1} do τi ← t(i+1) − t(i);7

zi ← s0; lr ← 1; /* start with likelihood ratio (lr) 1 */8

/* skip following loop if n = 0 */
for j ∈ {1, . . . , n} do9

µ̃←
√

τj

σ (r − σ2

2 − λ(eµJ+
σ2

J
2 − 1)); l ← ln(L)−zi

σ
√

τj
; u← ln(U)−zi

σ
√

τj
;10

pzm
← Φ(l − µ̃); pzM

← Φ(u− µ̃); p1 ← pzM
− pzm

;11

(independently) draw U (0, 1)-distributed prn u1, u2, u3;12

zi ← µ̃ + Φ−1(pzm
+ u1(pzM

− pzm
)); /* zi ∈ [l, u] */13

p2 ← 1− e−2l(l−zi);14

ai ← zi

2 −
√

z2
i

4 −
ln(u2·p2)

2 ; /* ai ∈ [l, zi] */15

p3 ← FB|Z=zi,A=ai
(u) (with tolerance ε);16

pym
← Φ(l−zi−µJ

σJ
); pyM

← Φ(u−zi−µJ

σJ
); p4 ← pyM

− pym
;17

y ← µJ + σJΦ−1(pym
+ u3(pyM

− pym
)); /* zi + y ∈ [l, u] */18

zi ← zi + y; lr ← lr · p1 · p2 · p3 · p4;19

µ̃←
√

τn+1

σ (r − σ2

2 − λ(eµJ+
σ2

J
2)); l ← ln(L)−zi

σ
√

τn+1
; u← ln(U)−zi

σ
√

τn+1
;20

k ← ln(K)−zi

σ
√

τn+1
;21

pzm
← Φ(k − µ̃); pzM

← Φ(u− µ̃); p1 ← pzM
− pzm

;22

(independently) draw U (0, 1)-distributed prn u1, u2;23

zi ← µ̃ + Φ−1(pzm
+ u1(pzM

− pzm
)); /* zi ∈ [k, u] */24

p2 ← 1− e−2l(l−zi);25

ai ← zi

2 −
√

z2
i

4 −
ln(u2·p2)

2 ; /* ai ∈ [l, zi] */26

p3 ← FB|Z=zi,A=ai
(u) (with tolerance ε);27

lr ← lr · p1 · p2 · p3;28

xi ← (es0+σ
√

Tzi −K) · lr ;29

ĈK,L,U ← e−rT 1
N

∑N
i=1 xi;30

5 Summary

In this paper we proposed a new method for generating (pseudo-) random triplets of the trivari-
ate distribution of (W (µ,σ)

x,T ,m
(µ,σ)
x,T ,M

(µ,σ)
x,T). In contrast to standard simulation methods for

this purpose, which rely on random walk approximations, our method is unbiased. Narrowing
the bias for standard methods must be payed for with slowdowns of simulation, which makes
our method about 2 000 times faster than standard methods in common situations.
A typical application for simulating final, minimal and maximal values of a stochastic process
is the simulation of final, high and low (log-)prices of securities. Although not restricted to
Brownian motion itself, stochastic models which include Brownian motion components, such
as jump-diffusion models, are often used to model log-prices in financial markets.
With the extension of our new simulation methods to jump-diffusion models, a reliable tool
for Monte Carlo option pricing in geometric Brownian motion and (Merton) jump-diffusion

13

models is provided. In our sample application, we focused on European continously monitored
constant double barrier knock-out calls. The investigation of other types of options, such as
swing options or options with changing barriers, and the extension to other types of price
processes which include diffusion components is left to further studies.

References

[BaCaIo99] Paolo Baldi, Lucia Caramellino & Maria Gabriella Iovino, Pricing General
Barrier Options: A Numerical Approach Using Sharp Large Deviations, Math-
ematical Finance 9 (1999), Nr. 4, 293–322.

[BaTo84] Clifford A. Ball & Walter N. Torous, The Maximum Likelihood Estimation of
Security Price Volatility: Theory, Evidence, and Application to Option Pricing,
Journal of Business 57 (1984), Nr. 1, 97–112.

[Bec83] Stan Beckers, Variances of Security Price Returns Based on High, Low, and
Closing Prices, Journal of Business 55 (1983), Nr. 1, 97–112.

[BeFrKlSK07] Martin Becker, Ralph Friedmann, Stefan Klößner & Walter Sanddorf-Köhle, A
Hausman test for Brownian motion, AStA - Advances in Statistical Analysis
91 (2007), Nr. 1, 3–21.

[BoSa02] Andrei N. Borodin & Paavo Salminen, Handbook of Brownian Motion - Facts
and Formulae, 2. Aufl., Probability and its Applications, Birkhäuser, Basel et
al., 2002.

[BrDi06] Michael W. Brandt & Francis X. Diebold, A No-Arbitrage Approach to Range-
Based Estimation of Return Covariances and Correlations, Journal of Business
79 (2006), Nr. 1, 61–74.

[CoTa04] Rama Cont & Peter Tankov, Financial Modelling with Jump Processes, CRC
Financial Mathematics Series, Chapman & Hall, Boca Raton et al., 2004.

[GaKl80] Mark B. Garman & Michael J. Klass, On the Estimation of Security Price
Volatilities from Historical Data, Journal of Business 53 (1980), Nr. 1, 67–78.

[GeYo96] Hélyette Geman & Marc Yor, Pricing and Hedging Double-Barrier Options: A
Probabilistic Approach, Aktuarielle Ansätze für Finanz-Risiken: Beiträge zum
6. Internationalen AFIR-Colloquium, Nürnberg, 1.-3. Oktober (Peter Albrecht,
Hrsg.), Actuarial Approach for Financial Risks (AFIR), International Actuarial
Association, 1996, 1227–1246.

[JoLe07] Mark S. Joshi & Terence S. Leung, Using Monte Carlo simulation and impor-
tance sampling to rapidly obtain jump-diffusion prices of continuous barrier
options, The Journal of Computational Finance 10 (2007), Nr. 4, 93–105.

[Klö06] Stefan Klößner, Empirical Evidence: Intraday Returns are neither Symmetric
nor Lévy Processes, 2006, Paper presented at Statistische Woche, Dresden,
2006, September 18-21.

[Klö07] , On Intraday Time-Reversibility of Return Processes, 2007, Paper pre-
sented at Statistics under one umbrella, Bielefeld, 2007, March 27-30.

[MeAt02] Steve A. K. Metwally & Amir F. Atiya, Using Brownian Bridge for Fast
Simulation of Jump-Diffusion Processes and Barrier Options, The Journal of
Derivatives 10 (2002), Nr. 1, 43–54.

14

[Mer76] Robert C. Merton, Option pricing when underlying stock returns are discon-
tinuous, Journal of Financial Economics 3 (1976), Nr. 1–2, 125–144.

[Par80] Michael Parkinson, The Extreme Value Method for Estimating the Variance of
the Rate of Return, Journal of Business 53 (1980), Nr. 1, 61–65.

[R] R Development Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2007,
ISBN 3-900051-07-0.

[RoSa91] L. C. G. Rogers & S. E. Satchell, Estimating variance from high, low and
closing prices, The Annals of Applied Probability 1 (1991), Nr. 4, 504–512.

[RoZh07] L. C. G. Rogers & Fanyin Zhou, Estimating correlation from high, low, open-
ing and closing prices, February 2007, to appear in: The Annals of Applied
Probability.

[YaZh00] Dennis Yang & Qiang Zhang, Drift-Independent Volatility Estimation Based
on High, Low, Open, and Close Prices, Journal of Business 73 (2000), Nr. 3,
477–491.

15

