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Abstract

While the literature on synthetic control methods mostly abstracts from out-of-sample

measures, Abadie et al. (2015) have recently introduced a cross-validation approach. This

technique, however, is not well-defined since it hinges on predictor weights which are

not uniquely defined. We fix this issue, proposing a new, well-defined cross-validation

technique, which we apply to the original Abadie et al. (2015) data. Additionally, we

discuss how this new technique can be used for comparing different specifications based

on out-of-sample measures, avoiding the danger of cherry-picking.
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1 Introduction

Abadie and Gardeazabal (2003) and Abadie et al. (2010) have introduced synthetic control

methods (SCM) to estimate a treated unit’s development in absence of the treatment. These

methods have gained a lot of popularity among applied researchers, Athey and Imbens (2017)

even state that SCM “is arguably the most important innovation in the policy evaluation

literature in the last 15 years”. Recently, SCM have been shown to perform well against

certain panel-based approaches (see Gardeazabal and Vega-Bayo, 2017), and have also been

used for forecasting (see Klößner and Pfeifer, 2017).

The basic idea of SCM is to find suitable donor weights describing how the treated unit is

‘synthesized’ by a weighted mix of unaffected control units, building a counterfactual. Treated

and synthetic unit should resemble each other as closely as possible prior to the treatment,

both with respect to the outcome of interest and economic predictors. The latter are variables

with predictive power for explaining the outcome. The SCM approach searches for optimal

predictor weights in order to grant more importance to variables with better predictive power.

However, SCM operate merely in-sample, making it difficult to assess the counterfactual’s

validity. To mitigate this problem, Abadie et al. (2015) (henceforth: ADH) have expanded

SCM, incorporating cross-validation. The pre-treatment timespan is divided into a training

and a validation period, and predictor weights are selected by minimizing the out-of-sample

error in the validation period. However, Klößner et al. (2017) (henceforth: KKPS) have recently

shown that there is a misconception of the ADH cross-validation technique. In applications,

there often exist many different solutions that minimize the out-of-sample error, rendering this

technique not well-defined since predictor weights are not uniquely defined.

We fix this problem by defining unique predictor weights following two principles. Special

predictors like lagged values of the outcome variable(s) are guaranteed to obtain certain mini-

mum weights, and predictors in general shall not become irrelevant due to weights accidentally

obtained too small. Applying this new cross-validation technique to ADH’s original data, we

exemplarily show that ADH’s main finding is confirmed, while corresponding placebo exercises

deliver diverging results, questioning the robustness of the main takeaway.
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Figure 1: Schematic Overview of Cross-Validation Technique. This is a refined version of
KKPS’s Figure 1.

2 SCM and Cross-Validation

For the synthetic control method, one uses two types of data—the variable of interest, Y , and

predictor variables, X. The latter consist of M linear combinations of pre-treatment values of

Y as well as r other covariates with explanatory power for Y . Both Y and X are considered

for a treated unit and for so-called donors, i.e., non-treated units, denoted by subscripts “1”

and “0”, respectively. In the example discussed by ADH and KKPS and also throughout this

paper, the treated unit is the 1990 reunified Germany, while (J = 16) Western OECD countries

serve as donors. The variable of interest (Y ) is GDP per capita, and the k = M + r predictors

(X) are the average of lagged GDP values (M = 1) and the covariates trade openness, inflation

rate, industry share of value added, amount of schooling, and the investment rate (r = 5).1

The corresponding quantities as well as a schematic overview of the cross-validation tech-

nique are provided in Figure 1. The SCM cross-validation approach consists of two steps.

During the first step, called ’training’, so-called predictor weights V ∗ are determined using

cross-validation techniques, during the second step, these weights V ∗ are used to estimate the

variable of interest’s counterfactual development in absence of the treatment. For determin-

ing V ∗, the training step decomposes the pre-treatment timespan (1971-1990) into a training

(1971-1980) and a validation period (1981-1990). In the training period, one makes use of the

1For more details on variables as well as donor choice, see Abadie et al. (2015, p. 509).
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k×J matrix X
(train)
0 and the k-dimensional vector X

(train)
1 , containing time averages of the pre-

dictors’ data for the donor units and the treated unit, respectively. Given these, one considers,

for any given positive predictor weights V = (v1, . . . , vk)′ ∈ Rk
++, the so-called training weights

W ∗
(train)(V ) ∈ RJ , which are defined as the solution of

min
W
||V

1
2

(
X

(train)
1 −X

(train)
0 W

)
||2 = min

W

k∑
m=1

vm

(
X

(train)
1m −X

(train)
0m W

)2
s.t. W ≥ 0,1′W = 1,

(1)

where V
1
2 is the k-dimensional diagonal matrix with the roots of V ’s elements on the diagonal,

while X
(train)
1m and X

(train)
0m denote the m-th component and row of X

(train)
1 and X

(train)
0 , respec-

tively, and 1 is the vector of ones. The training weights W ∗
(train)(V ) describe to what extent

each donor country is used during the training step to produce a ’synthetic’, i.e., counterfac-

tual, Germany, given that the predictors are weighted according to V . As the training weights

W ∗
(train)(V ) depend on the predictor weights V , one aims at finding those predictor weights V ∗

that produce the best forecast. This is done in the second part of the training step, making

use of the data in the validation period, the L × J matrix Y
(valid)
0 and the L-dimensional vec-

tor Y
(valid)
1 , containing the variable of interest’s data for the validation period. In particular,

ADH define predictor weights V ∗ = (v∗1, . . . , v
∗
k) as the predictor weights that minimize the

out-of-sample error ||Y (valid)
1 − Y

(valid)
0 W ∗

(train)(V )||2 over V , i.e., V ∗ is the solution of

min
V
||Y (valid)

1 − Y
(valid)
0 W ∗

(train)(V )||2 s.t. V ≥ 0,1′V = 1, (2)

where the predictor weights, without loss of generality, have been normalized to sum to unity.

After V ∗ has been determined, one proceeds to the ’main’ step, calculating the donor weights

W ∗
(main)(V

∗) as the minimizer of

min
W

k∑
m=1

v∗m

(
X

(valid)
1m −X

(valid)
0m W

)2
s.t. W ≥ 0,1′W = 1, (3)

where the k×J matrix X
(valid)
0 and the k-dimensional vector X

(valid)
1 contain the predictors’ data

for the validation period. Eventually, counterfactual values Ŷ
(post)
1 for comparing with actual

values Y
(post)
1 are given by Y

(post)
0 W ∗

(main)(V
∗), where Y

(post)
0 contains the donors’ post-treatment

outcome data.
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However, KKPS show that this approach often leads to ambiguous counterfactual values

because V ∗ is not well-defined due to Equation (2) not having a unique solution, but many

different minimizers:

V := {V : V is a minimizer of Equation (2)} (4)

denotes the corresponding set of minimizers, which often is not a singleton. Thus, in order to

come up with a well-defined cross-validation technique, it is necessary to single out one specific,

uniquely defined element of V . In order to do so, we first prevent predictors related with the

outcome from being attributed too small predictor weights, as otherwise the dependent variable

may be fitted very poorly in the ’main’ step. Therefore, we restrict V to

Ṽ :=

V ∈ V :

1
M

M∑
m=1

vm

max
m=1,...,k

vm
≥ 1

2
max
ṽ∈V

1
M

M∑
m=1

ṽm

max
m=1,...,k

ṽm

 ,

ensuring that the outcome-related predictors’ relative importance must not fall below half

of what it could maximally be. Second, no economic predictor should accidentally become

essentially irrelevant due to an extremely small relative weight. Thus, within Ṽ , the ratio

of the smallest over the largest predictor weight should be as large as possible, i.e.,
min

m=1,...,k
vm

max
m=1,...,k

vm

should be maximal within Ṽ . If there exists more than one element of Ṽ with that property, we

can among those choose the one for which the ratio
v(2)

max
m=1,...,k

vm
of the second-smallest predictor

weight, v(2), over the largest predictor weight becomes maximal. If, again, there are several

solutions to this maximization problem, we may maximize among those the ratio
v(3)

max
m=1,...,k

vm
,

and so on. Proposition 1 in the appendix shows that this procedure results in uniquely defined

predictor weights V ∗.

3 Estimating the Effect of the German Reunification

Equipped with our new, properly defined cross-validation approach, we now compare the results

of ADH and KKPS to the results our new method delivers.2

The unique predictor weights delivered by our cross-validation technique are 80.94% for

2Calculations were done using the statistics software R-3.3.3 (see R Core Team, 2016) in combination with
package MSCMT (see Becker and Klößner, 2017b).
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GDP per capita, 5.82% for trade openness, 1.11% for inflation, 1.11% for industry share of

value added, 4.77% for amount of schooling, and 6.25% for investment rate. The corresponding

estimated gap due to the reunification, the difference between actual and counterfactual values,

is displayed in Figure 2 (black, solid line, labeled ’cv’). In line with ADH and KKPS, we

find a loss of ca. 3,000 USD. This loss is due to Germany’s reunification, as the upper part

of Figure 3 reveals, which shows the ratio of root mean squared differences between actual

and counterfactual GDP after and before the reunification for a so-called placebo study. Here,

each donor country is artificially assigned as the treated unit, while Germany moves to the

donor pool. The post-pre-ratio of Germany is much larger than all placebo countries’ ratios,

indicating that the measured loss in GDP can actually be considered statistically significant.
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Figure 2: Gaps between GDP per capita of actual and synthetic Germany, estimated using
cross-validation with specifications of ADH (’cv’), using last two outcome lags (’TwoLags’),
without investment (’w/o investment’), and without U.S. data (’w/o USA’).

Our new cross-validation technique is also useful for comparing different specifications ac-

cording to an objective out-of-sample measure, without the danger of cherry-picking.3 For

instance, instead of using the lagged outcomes’ average, one might choose the two most re-

cent lagged outcome values as predictors, as in Montalvo (2011). This specification performs

actually slightly better than ADH’s specification, with an RMSPE in the validation period of

65.616 compared to 67.678. As Figures 2 and 3 show, results for this specification are very

3Ferman et al. (2017) discuss the dangers of cherry-picking when the standard SCM approach is used.
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similar to those for ADH’s specification. Alternatively, when removing the investment rate

from the predictor set or excluding the U.S. from the donor pool, the cross-validation criterion

rises to 70.198 or 84.728, respectively. The corresponding timelines in Figure 2 still show a

considerable estimated loss in GDP per capita due to the reunification. However, estimated

losses are much smaller than for the other specifications, especially those derived without data

on the U.S. Correspondingly, Figure 3 shows that these reductions are no longer significant

according to the placebo study. When investment is discarded, Germany’s post-pre-ratio is

only the second-largest, while it is only the fifth-largest when the U.S. data are removed from

the sample. Thus, confirming the findings of KKPS and in contrast to ADH, we find that the

U.S. data are essential for detecting a significant economic gap due to Germany’s reunification.
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A Appendix

Let V be a blunt convex cone in N -dimensional space, i.e., a convex cone not containing 0. For

vectors v = (v1, . . . , vN)′ ∈ V , we denote by v(·) := (v(1), . . . , v(N))
′ the ’ordered’ version of v

with v(1) ≤ v(2) ≤ . . . ≤ v(N).

Proposition 1. There exists an up to scaling unique element v∗ of V for which, for all v ∈ V,

(
v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) is lexicographically at least as large as (
v(1)
v(N)

, . . . ,
v(N−1)

v(N)
) .

Proof. First of all, we show that such v∗ exists: if there is an up to scaling unique maximizer

of
v(1)
v(N)

= min(v)
max(v)

, then this gives the vector we are looking for. If the solution to maximizing
v(1)
v(N)

is not unique, even up to scaling, then we can look among all these maximizers for those

with maximal
v(2)
v(N)

. Again, if this procudes a solution which is unique up to scaling, this is the

vector we are looking for. If there are still several solutions, even after scaling, we can proceed

by maximizing
v(3)
v(N)

among these, and so on. In the end, this procedure will terminate with a

vector v∗ for which (
v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) is lexicographically maximal.

We now prove uniqueness of v∗ up to scaling. To this end, assume that another vector ṽ is

given for which (
ṽ(1)
ṽ(N)

, . . . ,
ṽ(N−1)

ṽ(N)
) is also lexicographically maximal. Then, (

ṽ(1)
ṽ(N)

, . . . ,
ṽ(N−1)

ṽ(N)
) and

(
v∗
(1)

v∗
(N)

, . . . ,
v∗
(N−1)

v∗
(N)

) must coincide. Assuming w.l.o.g. that ṽ and v∗ are scaled such that ṽ(N) =

max(ṽ) = 1 = max(v∗) = v∗(N), this simplifies to (ṽ(1), . . . , ṽ(N−1)) = (v∗(1), . . . , v
∗
(N−1)), showing

that ṽ and v∗ are permutations of each other. We denote by Nmin,ṽ := {n ∈ {1, . . . , N} : ṽj =

ṽ(1) = v∗(1)} the set of all components where ṽ takes its minimum. Analogously, Nmin,v∗ := {n ∈

{1, . . . , N} : v∗j = v∗(1) = ṽ(1)} denotes the set of all components where v∗ takes its minimum.

Nmin,ṽ and Nmin,v∗ have a non-empty intersection, because otherwise we would have for v :=

ṽ + v∗ ∈ V : v(N) = max(v) ≤ 2 and v(1) = min(v) > min(ṽ) + min(v∗) = 2ṽ(1) = 2v∗(1), implying

that
v(1)
v(N)

> ṽ(1) = v∗(1), in contradiction to the optimality of ṽ and v∗. Thus, Nmin,ṽ∩Nmin,v∗ 6= ∅.

In particular, therefore, ṽ and v∗ coincide for all components n ∈ Nmin,ṽ ∩Nmin,v∗ . From here,

we can proceed iteratively, by considering {1, . . . , N}\(Nmin,ṽ ∩Nmin,v∗) and showing that there

are further components where ṽ and v∗ coincide, both taking the value ṽ(2) = v∗(2), and so on.

Overall, then, ṽ and v∗ must coincide completely.

Klößner et al. (2017, Lemma 1) and Becker and Klößner (2017a, Proposition 3) show that

V as defined in Equation (4) is a convex set which can be described by finitely many linear

(in-)equalities. Thus, the same holds true for Ṽ . Applying Proposition 1 to Ṽ shows that V ∗

is uniquely defined. V ∗ can be calculated by solving a series of linear programs.
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