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Abstract

We propose new variations of the HAR volatility forecasting model class originally intro-
duced by Corsi (2004). Our models differ from the HAR models of Andersen et al. (2007)
and Corsi et al. (2008) in a separate treatment of positive and negative jumps based on
estimators and tests of Barndorff-Nielsen et al. (2008) and Klößner (2008). An extensive
empirical study is carried out to compare the (out-of-sample) forecasting performance of
the different HAR models.
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1 Introduction

As mentioned in Andersen et al. (2007), volatility is central to asset pricing, asset allocation,
and risk management. A decade ago, volatility was usually measured on the basis of daily
returns, or sometimes daily open, high, low, and close prices1. The main vehicles for volatility
forecasting were the popular GARCH and (discrete time) stochastic volatility models. With
the increased availability of high frequency data, other concepts have emerged for measuring
and forecasting volatility, including realized variance2 (see, e.g., Andersen and Bollerslev (1998)
and Andersen et al. (2001)) or, more generally, realized (power) variation (see, e.g., Barndorff-
Nielsen and Shephard (2002a) and Barndorff-Nielsen and Shephard (2002b)).
The empirical results3 in Andersen et al. (2003) show that out-of-sample forecasting models
of realized variance (RV) outperform GARCH and stochastic volatility models.4 Corsi (2004)
adopt the Heterogeneous Market Hypothesis5, which was already employed in Müller et al.
(1997) for the construction of the HARCH model class, to develop a simple heterogeneous
autoregressive model for realized variance, the so-called HAR-RV model. In the HAR-RV
model, realized volatility is affected by different aggregations of past realized volatility, which
corresponds to appropriate parameter restrictions in the underlying autoregressive model. De-
spite their simplicity, HAR-RV models are able to capture most of the empirically observable
stylized facts of realized variance.
Andersen et al. (2007) and Corsi et al. (2008) extend the original HAR-RV model by sepa-
rately measuring the continuous sample path variation6 and the discontinuous jump part of
the quadratic variation, i.e., the sum of squared jumps (SSJ), using realized power variations.
Using newly introduced tests for the presence of jumps on particular (trading) days based on
asymptotic results of Barndorff-Nielsen and Shephard (2006), their empirical results indicate
better forecasting performance for models with separate regressors for the (aggregated) con-
tinuous and jump parts (where positively detected by the jump test) of the process’ variation.
Recent works of Barndorff-Nielsen et al. (2008) and Klößner (2008) introduce methods for
individual estimation of the sum of squared positive (SSpJ) and the sum of squared negative
jumps (SSnJ) based on high-frequency data, the latter making use of high-frequency open,
high, low, and close prices. We address the question whether incorporating these estimators
in HAR-RV models leads to an improved (out-of-sample) forecast performance for realized

1for estimators based on open, high, low, and close prices, see, e.g., Rogers et al. (1994) and the references
therein.

2also called realized volatility
3supported by analytical results in Andersen et al. (2004)
4This is not surprising, because of the different meanings of volatility: daily (squared) returns bare only very

noisy information of the volatility, i.e. the conditional variance of the daily returns, in GARCH and SV
models, whereas realized variance is a very good proxy for quadratic variation, i.e. the volatility in RV
models, see the discussion in Andersen and Bollerslev (1998).

5According to the Heterogeneous Market Hypothesis, different types of agents behave according to different
time resolutions.

6i.e., integrated volatility
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variance. For this purpose we propose some new HAR-RV model classes as competitors to
the HAR-RV-type models of Corsi (2004), Andersen et al. (2007), and Corsi et al. (2008). An
extensive empirical study is carried out to compare the out-of-sample forecasting performance
in the spirit of Corsi et al. (2008) by considering (out-of-sample) Mincer-Zarnowitz-R2 and
RMSE.
The remainder is organized as follows: Section 2 introduces the theoretical framework and some
basic notation. In section 3 we collect various estimators for quadratic variation, integrated
volatility, and the sum of squared (positive and negative) jumps for individual trading days.
Section 4 summarizes the tests for the presence of jumps, which are used to construct the HAR-
RV forecasting model classes in section 5. In section 6, the empirical results are presented in
aggregated form, while section 7 concludes.

2 Preliminaries and Notation

We adopt the setting of Klößner (2008), where the log-price process (pτ,t)τ∈[0,1] on each day7

t ∈ {1, . . . , T}, T ∈ N, is given as the sum of a Brownian semimartingale p0,t +
∫ τ

0 µs,tds +∫ τ
0 σs,tdWs,t and a finite activity pure jump process J (p)

τ,t ,

pτ,t = p0,t +
∫ τ

0
µs,tds+

∫ τ

0
σs,tdWs,t + J

(p)
τ,t ,

with locally bounded and predictable drift rate µτ,t, Brownian motion Wτ,t and never vanishing
spot volatility στ,t given by

στ,t = σ0,t +
∫ τ

0
µ̃s,tds+

∫ τ

0
σ̃s,tdWs,t +

∫ τ

0
vs,tdBs,t + J

(σ)
τ,t ,

where µ̃τ,t, σ̃τ,t, vτ,t are càdlàg, µ̃τ,t is locally bounded as well as predictable, Bτ,t is a Brownian
motion independent of Wτ,t, and J (σ)

τ,t is a finite-activity pure-jump process accounting for the
possibility of rare jumps in volatility.
It is well known that, for each day t ∈ {1, . . . , T}, the quadratic variation of p·,t on [0, 1],

QVt = lim
N→∞

N∑
i=1

(
p i
N
,t − p i−1

N
,t

)2
,

can be decomposed into integrated volatility, IVt :=
∫ 1

0 σ
2
τ,tdτ , and the sum of squared jumps,

SSJt :=
∑

τ∈[0,1](∆pτ,t)
2, with ∆pτ,t := pτ,t − pτ−,t and pτ−,t := limh→0+ pτ−h,t.

7the (trading) time horizon is normalized to [0, 1] for each single day
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Obviously, SSJt can be split up into the contributions due to positive and negative jumps,

SSpJt :=
∑

∆pτ,t>0
τ∈[0,1]

(∆pτ,t)2 and SSnJt :=
∑

∆pτ,t<0
τ∈[0,1]

(∆pτ,t)2 ,

leading to the representations QVt = IVt + SSJt and QVt = IVt + SSpJt + SSnJt.
To facilitate the exposition of estimators and tests concerning these quantities based on (equally
spaced) intradaily high-frequency log-price data8, we define for fixed N ∈ N the intradaily open,
high, low, and close (OHLC) log-prices

oi,t := p i−1
N
,t, hi,t := sup

τ∈[ i−1
N
, i
N

]

pτ,t, li,t := inf
τ∈[ i−1

N
, i
N

]
pτ,t, ci,t := p i

N
,t,

as well as the intradaily log-returns ri,t := ci,t − oi,t, for i ∈ {1, . . . , N} and t ∈ {1, . . . , T}.

3 Estimating QV, IV and Sum of Squared Jumps

We now collect various estimators for QVt, IVt, SSJt, SSpJt, and SSnJt from the literature.
We start with estimators relying only on the discrete log-price quotes p i

N
,t, for i ∈ {0, . . . , N}

and t ∈ {0, . . . , T}.

3.1 Estimators without Highs/Lows

3.1.1 Estimating QV

It is well known that QVt can be consistently9 estimated with the realized variance, RVt =∑N
i=1 r

2
i,t. In our setting, RVt can be regarded as the ’standard’ estimator for QVt, see e.g.

Andersen et al. (2001).

3.1.2 Estimating IV

A large class of estimators for quantities of the form∫ 1

0
|σs,t|pds

8including high and low quotes, in parts
9throughout the paper, we consider consistent estimation w.r.t. N →∞, in this case: plimN→∞RVt = QVt
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for p =
∑M

k=1 γk > 0, M ∈ N, γk ≥ 0 for k = 1, . . . ,M , is given by the scaled normalized10

realized multipower variation

MPV(γ1,...,γM )
t :=

1
1− M−1

N

1

N1− 1
2

∑
k γk

(
M∏
k=1

µ−1
γk

)
N∑
i=M

M∏
k=1

|ri−k+1,t|γk

with µγ := E (|u|γ) = 2γ/2 Γ( γ+1
2

)

Γ(1/2) for u ∼ N (0, 1).11

In our setting, MPV(γ1,...,γM )
t provides a consistent estimator of

∫ 1
0 |σs,t|

pds, if the condition
max{γ1, . . . , γM} < 2 holds, cf. Barndorff-Nielsen et al. (2006).
A special case is the well-known (scaled normalized) realized bipower variation,

BPVIV
t := MPV(1,1)

t =
1

1− 1
N

π

2

N∑
i=2

|ri−1,t| · |ri,t| ,

which has been proposed in Barndorff-Nielsen and Shephard (2004) as a consistent estimator
for IVt.
To overcome some of the problems induced by microstructure noise, Andersen et al. (2007)
suggest the use of a staggered form of multipower variation12, where l ∈ N returns are skipped
in the products instead of using adjacent returns. A special case of the resulting staggered
realized multipower variations,

s-MPV(γ1,...,γM ;l)
t :=

1

1− (l+1)(M−1)
N

1

N1− 1
2

∑
k γk

(
M∏
k=1

µ−1
γk

)
N∑

i=1+(l+1)(M−1)

M∏
k=1

|ri−(l+1)(k−1),t|γk ,

is the staggered realized bipower variation

s-BPVIV
t := s-MPV(1,1;1)

t =
1

1− 2
N

π

2

N∑
i=3

|ri−2,t| · |ri,t| .

Corsi et al. (2008) introduce the concept of realized threshold multipower variation to mitigate
the well-known positive finite-sample13 bias of realized multipower measures due to jumps in
the log-price process.
For given threshold functions ϑt : [0, 1] → R+ and ϑi,t := ϑt( i

N ), they consider (realized)

10realized multipower variation is often considered without scaling factor
∏M
k=1 µ

−1
γk , normalization factor

1

N
1− 1

2
∑
k γk

, and/or (finite-sample) bias correction factor 1

1−M−1
N

11particularly, µ1 =
√

2
π

. N (0, 1) denotes the standard normal distribution.
12see also Huang and Tauchen (2005)
13i.e. for fixed N ∈ N
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scaled14 threshold multipower variations

TMPV(γ1,...,γM )
t :=

1

N1− 1
2

∑
k γk

(
M∏
k=1

µ−1
γk

)
N∑
i=M

M∏
k=1

|ri−k+1,t|γk1|ri−k+1,t|2≤ϑi−k+1,t
,

where increments ri−k+1,t with r2
i−k+1,t > ϑi−k+1,t are treated as jumps and are thus eliminated.

Corsi et al. (2008) show that the particular choice of the threshold function ϑt is almost
immaterial for the considered applications. They chose a multiple c2

ϑ · V̂ Z
i,t of an iteratively

determined15 estimator for the local variance σ2
i
N
,t
,

V̂ Z
i,t :=

L∑
j=−L

j 6=−1,0,1
i+j∈{1,...,N}

K
(
j
L

)
r2
i+j,t1r2i+j,t≤c2V ·V̂

Z−1
j,t

L∑
j=−L

j 6=−1,0,1
i+j∈{1,...,N}

K
(
j
L

)
1
r2i+j,t≤c2V ·V̂

Z−1
j,t

, Z = 1, 2, . . . ,

with

K(y) :=
1√
2π

exp(−y
2

2
) ,

L = 25, cV = 3, and V̂ 0
i,t := +∞ (thus using all returns in the first iteration).

The robustness of the choice of the threshold is further investigated by considering different
values of cϑ in the family of threshold functions ϑcϑt with ϑcϑi,t := c2

ϑ · V̂ Z
i,t for i ∈ {1, . . . , N},

t ∈ {1, . . . , T}. As in Corsi et al. (2008), we chose cϑ = 3 for the following applications.

3.1.3 Estimating SSJ, SSpJ, and SSnJ

According to the decomposition of quadratic variation into integrated volatility and the sum
of squared jumps, consistent estimators of SSJt are obviously provided by the difference of
consistent estimators for QVt and IVt.
Building on the respective estimators for IVt, in Andersen et al. (2007), the estimator

ŜSJ
ABD

t = RVt − BPVIV
t

for SSJt is considered in a first approach, whereas Corsi et al. (2008) make use of their threshold
estimator for IVt and obtain

ŜSJ
CPR

t = RVt − TBPVIV
t

for estimating SSJt.

14In Corsi et al. (2008), scaling is not incorporated in the definition of TMPV
(γ1,...,γM )
t .

15the iteration stops if V̂ Zi,t ≡ V̂ Z−1
i,t or if Z = 100 (which has never occured in our empirical applications)
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estimator calculation
RUVpt 2

∑N
i=1 2 (hi,t − oi,t) (hi,t − ci,t)1ri,t>0

RDVpt 2
∑N

i=1 2 (oi,t − li,t) (ci,t − li,t)1ri,t>0

RGRVpt 2
∑N

i=1
1

2 ln 2−1 (hi,t − oi,t) (oi,t − li,t)1ri,t>0

RTrGRVpt 2
∑N

i=1
1

2 ln 2−1 (hi,t − ci,t) (ci,t − li,t)1ri,t>0

RpJVpt
8
7

∑N
i=1

1
2

(
(hi,t − oi,t)

2 + (ci,t − li,t)
2
)
1ri,t>0

RnJVpt 8
∑N

i=1
1
2

(
(hi,t − ci,t)

2 + (oi,t − li,t)
2
)
1ri,t>0

RDVnt 2
∑N

i=1 2 (oi,t − li,t) (ci,t − li,t)1ri,t<0

RUVnt 2
∑N

i=1 2 (hi,t − oi,t) (hi,t − ci,t)1ri,t<0

RGRVnt 2
∑N

i=1
1

2 ln 2−1 (hi,t − oi,t) (oi,t − li,t)1ri,t<0

RTrGRVnt 2
∑N

i=1
1

2 ln 2−1 (hi,t − ci,t) (ci,t − li,t)1ri,t<0

RnJVnt 8
∑N

i=1
1
2

(
(hi,t − ci,t)

2 + (oi,t − li,t)
2
)
1ri,t<0

RpJVnt
8
7

∑N
i=1

1
2

(
(hi,t − oi,t)

2 + (ci,t − li,t)
2
)
1ri,t<0

RUVzt 2
∑N

i=1 (hi,t − oi,t)
2
1ri,t=0

RDVzt 2
∑N

i=1 (oi,t − li,t)
2
1ri,t=0

RGVzt 12
π2−6

∑N
i=1 (hi,t − oi,t) (oi,t − li,t)1ri,t=0

Table 1: 12+3 basic estimators of Klößner (2008)

Disentangling SSJt in SSpJt and SSnJt for estimation purposes was first achieved by Barndorff-
Nielsen et al. (2008), who proposed realized semi-variances, defined as

RS+
t :=

N∑
i=1

r2
i,t1ri,t>0 and RS−t :=

N∑
i=1

r2
i,t1ri,t<0 ,

to obtain estimators for the sum of squared positive jumps and the sum of squared negative
jumps. As RS+

t is a consistent estimator for 1
2 IVt + SSpJt, and RS−t consistently estimates

1
2 IVt + SSnJt, consistent estimators for SSpJt and SSnJt are easily obtained by

ŜSpJ
RS

t := BPUVt := RS+
t −

1
2

BPVIV
t and ŜSnJ

RS

t := BPDVt := RS−t −
1
2

BPVIV
t .

3.2 Estimators using Highs/Lows

In Klößner (2008), estimators for QVt, IVt, SSJt, SSpJt, and SSnJt based on intradaily open,
high, low, and close quotes oi,t, hi,t, li,t, and ci,t for i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, are
developed. The estimators are constructed as (in different senses) optimal linear combinations
of a set of 12 basic estimators, supplemented by 3 (theoretically irrelevant) estimators for the
(empirically observable) case of zero increments (ri,t = ci,t− oi,t = 0). The definitions of these
12 (+3) basic estimators are summarized in Table 1.
By solving quadratic programs with linear constraints, Klößner (2008) designes (efficient) es-

7



basic est. \ est. Q̂V
(c)

t ÎV
(c)

t ŜSJ
(c)

t ŜSpJ
(c)

t ŜSnJ
(c)

t

RUVpt -0.89954 0.12208 -1.02162 -1.13861 0.11699
RDVpt -0.89954 0.12208 -1.02162 -1.13861 0.11699
RGRVpt 0.18738 0.13376 0.05362 0.07141 -0.01779
RTrGRVpt 0.18738 0.13376 0.05362 0.07141 -0.01779
RpJVpt 0.87500 0.00000 0.87500 0.87500 0.00000
RnJVpt 1.04933 -0.01168 1.06101 1.20625 -0.14524
RDVnt -0.89954 0.12208 -1.02162 0.11699 -1.13861
RUVnt -0.89954 0.12208 -1.02162 0.11699 -1.13861
RGRVnt 0.18738 0.13376 0.05362 -0.01779 0.07141
RTrGRVnt 0.18738 0.13376 0.05362 -0.01779 0.07141
RnJVnt 0.87500 0.00000 0.87500 0.00000 0.87500
RpJVnt 1.04933 -0.01168 1.06101 -0.14524 1.20625
RUVzt 0.25537 0.25537 0.00000 0.00000 0.00000
RDVzt 0.25537 0.25537 0.00000 0.00000 0.00000
RGVzt 0.48926 0.48926 0.00000 0.00000 0.00000

Table 2: weights of consistent estimators in Klößner (2008)

timators for special purposes, including consistent estimators for QVt, IVt, SSJt, SSpJt, and
SSnJt with feasible central limit theorems. Table 2 contains the weights of the basic estimators
for these consistent estimators.

4 Testing for the Presence of Jumps

In this section, we collect tests for the presence of jumps from the recent literature. Based
on distributional results developed in Barndorff-Nielsen and Shephard (2006), Corsi et al.
(2008), and Klößner (2008), the asymptotic distribution of certain test statistics under the null
hypothesis of an absent jump component J (p)

τ,t is known16, allowing for a simple construction
of test recipes.
All of the following tests for the presence of jumps need a consistent estimator for integrated
quarticity (IQ) to be feasible. A summary of these estimators follows.

4.1 Estimators for IQ

Applying the aforementioned results for realized (threshold) multipower variation, an extensive
family of estimators for IQt based on p i

N
,t, i ∈ {0, . . . , N}, t ∈ {1, . . . , T}, can be constructed.

We revert to the (integrated) quarticity measures used in Andersen et al. (2007), Corsi et al.
(2008) and Huang and Tauchen (2005), more precisely:

16in particular, the resulting asymptotic distribution is N (0, 1) for all following test statistics
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• realized tripower variation quarticity measure:

TriPVIQ
t := MPV

( 4
3
, 4
3
, 4
3

)
t =

N Γ(1
2)3

4 Γ(7
6)3

N∑
i=3

|ri−2,t|
4
3 · |ri−1,t|

4
3 · |ri,t|

4
3

• realized quadpower variation quarticity measure:

QPVIQ
t := MPV(1,1,1,1)

t =
N π2

4

N∑
i=4

|ri−3,t| · |ri−2,t| · |ri−1,t| · |ri,t|

• staggered realized tripower variation quarticity measure:

s-TriPVIQ
t := s-MPV

( 4
3
, 4
3
, 4
3

;1)
t =

N Γ(1
2)3

4 Γ(7
6)3

1
1− 4

N

N∑
i=5

|ri−4,t|
4
3 · |ri−2,t|

4
3 · |ri,t|

4
3

• staggered realized quadpower variation quarticity measure:

s-QPVIQ
t := s-MPV(1,1,1,1;1)

t =
N π2

4
1

1− 6
N

N∑
i=7

|ri−6,t| · |ri−4,t| · |ri−2,t| · |ri,t|

Klößner (2008) presents the following new estimator for IQt, which makes additionally use of
intradaily high and low (log-)prices hi,t and li,t, i ∈ {1, . . . , N}, t ∈ {1, . . . , T}:

ÎQ
hl

t =
N

2

N∑
i=1

16
3

(
(hi,t − ci,t)

4 + (oi,t − li,t)
4
)
1ri,t>0

+
N

2

N∑
i=1

16
3

(
(hi,t − oi,t)

4 + (ci,t − li,t)
4
)
1ri,t<0

+ N
N∑
i=1

(
(hi,t − oi,t)

4 + (oi,t − li,t)
4
)
1ri,t=0

ÎQ
hl

t will be used for the tests based on intradaily open, high, low, and close data.

4.2 Tests based on (staggered) MPV and threshold MPV

In Huang and Tauchen (2005), many different tests for the presence of jumps based on RV
and (staggered) MPV are constructed and compared. As a result of their comprehensive
Monte Carlo studies they suggest employing a ratio form test statistics, which has the nice
interpretation as a Hausman-type test.
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Andersen et al. (2007) make direct use of this asymptotically N (0, 1)-distributed ratio test
statistics,

Zt :=
√
N

(RVt − s-BPVIV
t ) · RV−1

t√
(π2

4 + π − 5) max
{

1, s-TriPVIQ
t

(s-BPVIV
t )2

} ,

while Corsi et al. (2008) build upon a similar structure, but use corrected versions of their
threshold estimators in place of s-BPVIV

t and s-TriPVIQ
t .

Under the null hypothesis of no jumps, the threshold estimators TMPV(γ1,...,γM )
t are biased

downwards, since the contributions |ri−k+1,t|γk for ri−k+1,t are excluded if ri−k+1,t is too big
(i.e. r2

i−k+1,t > ϑi−k+1,t). To eliminate this bias, Corsi et al. (2008) replace |ri−k+1,t|γk by (an
estimator of) its (conditional) expectation under the null17 (instead of zero) in these cases.
They arrive at the corrected versions of (realized) threshold MPV,

C-TMPV(γ1,...,γM )
t :=

1

N1− 1
2

∑
k γk

N∑
i=M

M∏
k=1

Zγk(ri−k+1,t, ϑi−k+1,t) ,

with

Zγ(x, y) :=

|x|
γ if x2 ≤ y

1
2Φ(−cϑ)

√
π

(
2
c2ϑ
y
) γ

2 Γ
(
γ+1

2 ,
c2ϑ
2

)
if x2 > y

.

The resulting corrected test statistics

C-Zt :=
√
N

(RVt − C-TBPVIV
t ) · RV−1

t√
(π2

4 + π − 5) max
{

1, C-TTriPVIQ
t

(C-TBPVIV
t )2

}

is again asymptotically N (0, 1)-distributed.

4.3 Tests based on OHLC data

In Klößner (2008), special purpose estimators for tests on the presence of jumps are also
developed. In particular, separate test for the presence of arbitrary jumps, positive jumps,
and negative jumps are constructed. The test statistics rely on certain estimators for SSJt,
SSpJt, and SSnJt, again constructed as linear combinations of the twelve aforementioned basic
estimators, with the weights given in Table 3. Table 3 also contains variance factors in the last

17given by

E
(
|ri−k+1,t|γk

∣∣∣r2i−k+1,t > ϑi−k+1,t

)
=

Γ
(
γk+1

2
,
c2ϑ
2

)
2Φ

(
−
√
ϑi−k+1,t

σ i
N
,t

)
√
π

(2σ i
N
,t)

1
2 γk ,

where Γ( · , · ) denotes the upper incomplete Gamma function, i.e. Γ(α, x) =
∫ +∞
x

sα−1e−sds, and Φ( · )
denotes the cumulative distribution function of the standard normal distribution.
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basic est. \ est. ŜSJ
(t)

t ŜSpJ
(t)

t ŜSnJ
(t)

t

RUVpt -1.02162 -1.50326 0.00000
RDVpt -1.02162 -1.50326 0.00000
RGRVpt 0.05362 0.20185 0.00000
RTrGRVpt 0.05362 0.20185 0.00000
RpJVpt 0.87500 0.87500 0.00000
RnJVpt 1.06101 1.72782 0.00000
RDVnt -1.02162 0.00000 -1.50326
RUVnt -1.02162 0.00000 -1.50326
RGRVnt 0.05362 0.00000 0.20185
RTrGRVnt 0.05362 0.00000 0.20185
RnJVnt 0.87500 0.00000 0.87500
RpJVnt 1.06101 0.00000 1.72782
variance factors 1.30144 0.86020 0.86020

Table 3: weights of estimators for tests in Klößner (2008)

row, which will be needed for normalization of the test statistics.
The resulting test statistics

TJhl
t :=

√
N

ŜSJ
(t)

t√
1.30144 ÎQ

hl

t

, TJphl
t :=

√
N

ŜSpJ
(t)

t√
0.86020 ÎQ

hl

t

, TJnhl
t :=

√
N

ŜSnJ
(t)

t√
0.86020 ÎQ

hl

t

are asymptotically N (0, 1)-distributed under the null hypotheses of no jumps at all, no positive
jumps, and no negative jumps, resp.

5 Forecasting Models for Realized Volatility

5.1 HAR models based on RV and SSJ

In this section we present various forecasting models for (transformations of) the volatility
of the log-price process pτ,t. We build upon the stochastic additive cascade of three realized
variance components corresponding to daily, weekly, and monthly time horizons of market
activity, the so-called HAR model, which was originaly introduced by Corsi (2004).
To simplify notation, the arithmetic mean of a subseries (Xt)t2t=t1+1 of a time series (Xt)Tt=1

will be denoted by

Xt1:t2 :=
1

t2 − t1

t2∑
t=t1+1

Xt

for t1, t2 ∈ N, 1 ≤ t1 < t2 ≤ T .
The first HAR model of Corsi (2004), which we further refer to as HAR-RV model, can then
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be written out as18

RVt:t+h = β0 + βdRVt + βwRVt−5:t + βmRVt−22:t + εt ,

where h ∈ {1, 5, 22} is the aggregation frequency of the forecast19 and εt is assumed to be IID.
Corsi (2004) also proposed square-root and logarithmic versions20 of the HAR-RV model, i.e.

RV
1
2
t:t+h = β0 + βdRV

1
2
t + βwRV

1
2
t−5:t + βmRV

1
2
t−22:t + εt

and
log RVt:t+h = β0 + βd log RVt + βw log RVt−5:t + βm log RVt−22:t + εt ,

resp.
Andersen et al. (2007) extend the HAR-RV model first by adding a jump component, namely
an estimator Jt for the sum of squared jumps, to the model, i.e.

RVt:t+h = β0 + βdRVt + βwRVt−5:t + βmRVt−22:t + βjJt + εt ,

where Jt := max{ŜSJ
ABD

t , 0} = max{RVt − BPVIV
t , 0}, resulting in the so-called HAR-RV-J

model with corresponding square-root and logarithmic21 versions.
They refine their original model in three ways: first, they make use of their test for the presence
of jumps on day t by replacing Jt with

Jt,α :=
(
RVt − BPVIV

t

)
· 1Zt>Φ−1(α) ,

obviously replicating Jt for α = 0.5.
Second, they replace RVt with the difference of RVt and Jt,α, i.e. with

Ct,α := RVt − Jt,α = RVt · 1Zt≤Φ−1(α) + BPVIV
t · 1Zt>Φ−1(α),

and third, Andersen et al. (2007) include weekly and monthly aggregated jump components
as well, resulting in their so-called HAR-RV-CJ model

RVt:t+h = β0 + βcdCt,α + βcwCt−5:t,α + βcmCt−22:t,α + βjdJt,α + βjwJt−5:t,α + βjmJt−22:t,α + εt

with adequately defined square-root and logarithmic versions.
The HAR-RV-TCJ model of Corsi et al. (2008) emerges from the HAR-RV-CJ model by

18For the coefficients, we use the abbreviations d for daily, w for weekly (t−5 : t), and m for monthly (t−22 : t)
aggregation levels, resp.

19h = 1 corresponds to daily volatility forecasts, h = 5 to weekly, and h = 22 to monthly forecasts.
20the transformations are applied to the aggregated quantities, e.g. RV

1
2
t−5:t := (RVt−5:t)

1
2 .

21for the logarithmic transformation of Jt, log(Jt + 1) is considered instead of log Jt.
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replacing BPVIV
t with TBPVIV

t , s-BPVIV
t with C-TBPVIV

t , and s-TriPVIQ
t with C-TTriPVIQ

t ,
resp., resulting in22

RVt:t+h = β0+βcdTCt,α+βcwTCt−5:t,α+βcmTCt−22:t,α+βjdTJt,α+βjwTJt−5:t,α+βjmTJt−22:t,α+εt ,

where TJt,α :=
(
RVt − TBPVIV

t

)
· 1C-Zt>Φ−1(α),

TCt,α := RVt − TJt,α = RVt · 1C-Zt≤Φ−1(α) + TBPVIV
t · 1C-Zt>Φ−1(α) ,

and TCt−5:t,α, TCt−22:t,α, TJt−5:t,α as well as TJt−22:t,α defined as usual.

5.2 HAR models based on RV, SSpJ and SSnJ

All previous HAR models23 can be regarded as regression models of the form

Q̂Vt+1 = β0 + βdQ̂Vt + βwQ̂Vt−5:t + βmQ̂Vt−22:t + εt

or

Q̂Vt+1 = β0 + βcdÎVt + βcw ÎVt−5:t + βcmÎVt−22:t + βjdŜSJt + βjwŜSJt−5:t + βjmŜSJt−22:t + εt .

With other estimators for QVt, IVt, SSJt or potentially SSpJt and SSnJt at hand, further HAR-
type models are easily constructed. While (daily) tests for the presence of jumps are used in
most specifications, there is apparently no implicit need for such tests. Using the square-root
or logarithmic transformation requires non-negative/positive explanatory variables, which is
guaranteed by using one of the aforementioned tests for the presence of jumps (for α ≤ 0.5),
but using only the positive part (as Jt in the HAR-RV-J model) or using other transformations,
e.g. the symmetric square root transformation

ssqrt : R→ R; ssqrt(x) =

+
√
x : x ≥ 0

−
√
−x : x < 0

or the symmetric logarithm transformation

slog : R→ R; slog(x) =

+ log(1 + x) : x ≥ 0

− log(1− x) : x < 0
,

is also feasible.
We propose some new HAR-type models, which are based on the work of Barndorff-Nielsen

22Corsi et al. (2008) finally leave the weekly and monthly jump aggregates out of their model
23apart from the (intermediate) HAR-RV-J model
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et al. (2008) and Klößner (2008):

• the HAR-RV-RS model:

RVt:t+h = β0 + βdBPVIV
t + βwBPVIV

t−5:t + βmBPVIV
t−22:t

+ βjd+ ŜSpJ
RS

t + βjd− ŜSnJ
RS

t + βjw+ ŜSpJ
RS

t−5:t + βjw− ŜSnJ
RS

t−5:t

+ βjm+ ŜSpJ
RS

t−22:t + βjm− ŜSnJ
RS

t−22:t + εt (1)

• the HAR-RV-HL model:

RVt:t+h = β0 + βdÎV
(c)

t + βw ÎV
(c)

t−5:t + βmÎV
(c)

t−22:t

+ βjd+ ŜSpJ
(c)

t + βjd− ŜSnJ
(c)

t + βjw+ ŜSpJ
(c)

t−5:t + βjw− ŜSnJ
(c)

t−5:t

+ βjm+ ŜSpJ
(c)

t−22:t + βjm− ŜSnJ
(c)

t−22:t + εt (2)

• the HAR-RV-HL-T model:

RVt:t+h = β0 + βdĈ
hl
t + βwĈ

hl
t−5:t + βmĈ

hl
t−22:t

+ βjd+ Ĵp
hl

t + βjd− Ĵn
hl

t + βjw+ Ĵp
hl

t−5:t + βjw− Ĵn
hl

t−5:t

+ βjm+ Ĵp
hl

t−22:t + βjm− Ĵn
hl

t−22:t + εt , (3)

where Ĵp
hl

t := ŜSpJ
(c)

t · 1TJphl
t >Φ−1(α), Ĵn

hl

t := ŜSnJ
(c)

t · 1TJnhl
t >Φ−1(α),

Ĉhl
t := Q̂V

(c)

t − Ĵp
hl

t − Ĵn
hl

t = ÎV
(c)

t + ŜSpJ
(c)

t · 1TJphl
t ≤Φ−1(α) + ŜSnJ

(c)

t · 1TJnhl
t ≤Φ−1(α) ,

and Ĉhl
t−5:t, Ĉ

hl
t−22:t, Ĵp

hl

t−5:t, Ĵn
hl

t−5:t, Ĵp
hl

t−22:t as well as Ĵn
hl

t−22:t defined as usual.

It is important to note that OHLC data is required for the estimation of HAR-RV-HL and
HAR-RV-HL-T, whereas HAR-RV-RS does not rely on high and low quotes.
Of course, many more HAR-type model specifications are imaginable. In the next section we
compare the aforementioned HAR models in the spirit of Corsi et al. (2008), i.e., we estimate all
models (with Newey-West robust standard errors) and calculate24 the (out-of-sample) Mincer-

Zarnowitz-R2 and the out-of-sample relative RMSE of the prediction R̂V
1/2

t of RV1/2
t (based

24The out-of-sample Mincer-Zarnowitz-R2 of a forecasting model is the R2 of the regression yt = α+ βŷt + εt,
t = t0, . . . , T , where ŷt is the forecast of yt based on the information up to time t− 1.
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on information up to time t− 1), defined by

RMSE =
1

T − t0 + 1

 T∑
t=t0

RV
1
2
t − R̂V

1
2
t

RV
1
2
t

2
1
2

.

We chose t0 = 10 for all models.

6 Empirical Results

We apply the HAR models of the previous section to various intradaily OHLC data with
interval length of 5 minutes.25 The data set consists of

• stock indices: Dow Jones Industrial Average, NASDAQ Composite, NASDAQ 100, S&P
100, S&P 500,

• foreign exchange markets: AUD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD,

• futures: Crude Oil (01/2009), E-Mini S&P 500 (12/2008), Gold (02/2009), E-Mini NAS-
DAQ 100, S&P 500 (12/2008)

for the time range from 2000-01-01 up to 2007-12-31.26

We varied the HAR model parameters as follows:

• The significance level of all tests is set to α = 0.001.

• Forecast horizons of h = 1 day and h = 5 days.

• Single jump component (1 day) and three jump components (aggregation of 1, 5, 22
days)

• Different transformations: none, sqrt, ssqrt, log, slog

The individual estimation results are available in a separate appendix. We present (highly)
aggregated results here, consisting of

1. mean values of Mincer-Zarnowitz-R2, RMSE, and mean percentage of days with signifi-
cant jumps (only for models featuring tests for the presence of jumps),

2. mean ranks (over the different HAR models) of Mincer-Zarnowitz-R2 and RMSE27,

25The log- and slog-transformations are of course not scale-independent. Following Andersen et al. (2007) and
Corsi et al. (2008), the data has been annualized, i.e. all log-prices are multiplied by 250.

26Data source: disktrading.com
27for RMSE, lower ranks are ’better’
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3. mean percentages from maximum (over the different HAR models) of Mincer-Zarnowitz-
R2 and RMSE28,

in Tables 4 – 6 (overall) and Tables 7 – 18 (for different values of h and different jump com-
ponents). The values in Tables 4 – 18 are printed in greyscales to improve the illustration of
the main results: the darker the numbers, the better the result, i.e. for R2, bigger values and
ranks are darker, for RMSE, smaller values and ranks are darker, resp.
In parts, our results for HAR-RV, HAR-RV-J, HAR-RV-CJ, and HAR-RV-TCJ are in line
with the results of Andersen et al. (2007) and Corsi et al. (2008). Particularly, the forecasts
for h = 5 outperform29 the forecasts for h = 1. Furthermore, adding the aggregated jump
components for 5 and 22 days as explanatory variables does not result in a general improvement
of the predictions. As observed in Andersen et al. (2007), the forecasts of the HAR-RV-CJ
model are often superior to the HAR-RV and HAR-RV-J, especially w.r.t. the (out-of-sample)
Mincer-Zarnowitz-R2 for the (s)sqrt and (s)log transformations. In contrast to Corsi et al.
(2008), the advantages of the HAR-RV-TCJ model forecasts seem to be less pronounced.
While the aggregated results indicate superiority of the HAR-RV-TCJ model w.r.t. R2 in the
untransformed and (s)sqrt tranformed models, HAR-RV-CJ often performs better w.r.t. to
RMSE and other transformations.
Unlike the HAR-RV-J, HAR-RV-CJ, and HAR-RV-TCJ model, the newly proposed HAR-RV-
RS model discriminates between (the daily sums of) positive and negative (squared) jumps.
The question whether this individual treatment of the positive and negative jump component
leads to improved forecasts of realized variance can be answered positively. The aggregated
results indicate that the HAR-RV-RS model outperforms all other models w.r.t. RMSE for all
transformations. HAR-RV, HAR-RV-J, and HAR-RV-CJ are inferior to HAR-RV-RS for all
transformations w.r.t. to R2, only for the untransformed and the (s)sqrt transformed models,
HAR-RV-TCJ outperforms HAR-RV-RS w.r.t. R2.
It is remarkable, that the HAR-RV-RS model specification does not include tests for the pres-
ence of jumps and thus does not rely on choosing significance levels or other tuning parameters.
In contrast to the estimation of the HAR-RV-TCJ model, which involves iterative estimation
of the local volatility, the computing costs for the HAR-RV-RS model estimation are compara-
ble to the HAR-RV, HAR-RV-J and HAR-RV-CJ models. Aside from the improved volatility
predictions, the HAR-RV-RS model estimations30 reveal interesting differences between the
effect of positive and negative jumps. We omit a detailed evaluation of the individual results,
but in summary, for futures and indices the effect of positive jumps on future realized variances
if often (significantly) negative, whereas negative jumps often have a (significantly) positive
effect on future volatility. Furthermore, the estimated individual effects of positive and nega-
tive jumps are sometimes (both) significant although the (combined) effect of arbitrary jumps
28for RMSE, lower percentages are ’better’
29concerning Mincer-Zarnowitz-R2 and RMSE
30see the separate appendix
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(in other models) is not.
A comparison of the aforementioned models with the HAR-RV-HL and the HAR-RV-HL-T
models is difficult, because the regressors in these models are estimated with OHLC data
whereas the explained realized variance is estimated without high and low price data. Hence,
the bad forecasting performance is not surprising. It is nevertheless remarkable that the test
for the presence of jumps indicates jumps far more often than the test in the HAR-RV-CJ and
HAR-RV-TCJ model specifications.

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 0.529989 0.525758 0.519488 0.534523 0.525985 0.495167 0.533772

RMSE 0.006142 0.006074 0.006056 0.005967 0.005818 0.006347 0.006025
sqrt R2 0.652589 0.651210 0.654986 0.657465 0.656328 0.616291 0.654051

RMSE 0.005129 0.005106 0.005055 0.005042 0.005016 0.005509 0.005224
ssqrt R2 0.652589 0.651210 0.654986 0.657465 0.655897 0.617097 0.654051

RMSE 0.005129 0.005106 0.005055 0.005042 0.005013 0.005476 0.005224
log R2 0.686785 0.686954 0.688914 0.687309 0.692535 0.650302 0.685440

RMSE 0.004811 0.004803 0.004934 0.004821 0.004739 0.005283 0.004981
slog R2 0.687756 0.688307 0.690208 0.690392 0.692443 0.649366 0.687347

RMSE 0.004878 0.004859 0.004945 0.004853 0.004794 0.005289 0.005039
sign. (%) 18.158130 21.543148 27.217662

Table 4: Overall mean values, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 4.350000 3.733333 4.250000 4.433333 3.633333 2.516667 5.083333

RMSE 4.366667 4.033333 4.150000 3.583333 3.033333 5.100000 3.733333
sqrt R2 3.816667 3.283333 4.366667 5.166667 4.900000 2.050000 4.416667

RMSE 4.133333 4.366667 3.366667 2.750000 2.800000 6.016667 4.566667
ssqrt R2 3.833333 3.283333 4.383333 5.216667 4.783333 2.033333 4.466667

RMSE 4.150000 4.416667 3.366667 2.800000 2.733333 5.916667 4.616667
log R2 4.216667 4.133333 4.750000 3.800000 5.500000 2.016667 3.583333

RMSE 3.333333 3.700000 3.350000 3.666667 2.616667 6.383333 4.950000
slog R2 3.933333 3.833333 4.716667 4.566667 5.133333 2.016667 3.800000

RMSE 3.633333 3.750000 3.283333 3.433333 2.816667 6.200000 4.883333

Table 5: Overall mean ranks, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 96.045454 95.626866 94.478417 97.434294 95.211900 88.565801 96.698926

RMSE 91.946696 91.015770 90.789974 89.708710 87.877302 96.786887 90.459391
sqrt R2 98.189841 97.977013 98.576553 98.984977 98.553082 91.365133 98.442905

RMSE 91.108112 90.787405 89.925249 89.673120 89.297185 98.864271 92.603315
ssqrt R2 98.208220 97.995336 98.595003 99.003486 98.522165 91.610646 98.461377

RMSE 91.575073 91.252490 90.389478 90.134360 89.700385 98.781680 93.070171
log R2 98.683927 98.697202 98.983713 98.775195 99.405854 92.340304 98.531473

RMSE 87.964573 87.868364 88.737187 88.172564 86.723161 97.411926 90.716289
slog R2 98.685168 98.756465 99.041307 99.097364 99.236768 91.904095 98.673849

RMSE 89.673364 89.402869 90.000231 89.394006 88.287916 97.906254 92.273564

Table 6: Overall mean percentages of row-wise maxima, α = 0.001
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trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 0.466302 0.470205 0.451151 0.481667 0.477007 0.440519 0.476296

RMSE 0.007020 0.006959 0.006894 0.006798 0.006753 0.007381 0.006937
sqrt R2 0.605783 0.607945 0.608266 0.614308 0.614824 0.576847 0.608086

RMSE 0.006047 0.005998 0.005948 0.005929 0.005927 0.006566 0.006199
ssqrt R2 0.605783 0.607945 0.608266 0.614308 0.614426 0.576265 0.608086

RMSE 0.006047 0.005998 0.005948 0.005929 0.005927 0.006509 0.006199
log R2 0.636229 0.638015 0.638685 0.638471 0.643639 0.604106 0.634123

RMSE 0.005687 0.005647 0.005846 0.005633 0.005602 0.006271 0.005935
slog R2 0.642382 0.644867 0.645196 0.647332 0.649806 0.608433 0.641590

RMSE 0.005781 0.005730 0.005870 0.005708 0.005687 0.006341 0.006024
sign. (%) 18.158130 21.543148 27.217662

Table 7: Mean values, h = 1, jump comp.: 1, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 3.866667 4.066667 4.066667 4.533333 3.933333 2.200000 5.333333

RMSE 4.333333 3.933333 3.666667 3.133333 3.066667 5.733333 4.133333
sqrt R2 3.200000 3.266667 4.266667 5.333333 5.600000 2.000000 4.333333

RMSE 4.466667 4.200000 3.000000 2.333333 2.733333 6.400000 4.866667
ssqrt R2 3.200000 3.266667 4.266667 5.400000 5.533333 2.000000 4.333333

RMSE 4.533333 4.200000 3.000000 2.333333 2.733333 6.266667 4.933333
log R2 4.200000 4.666667 4.800000 3.733333 5.800000 1.666667 3.133333

RMSE 3.733333 3.133333 3.533333 3.533333 2.400000 6.666667 5.000000
slog R2 3.733333 4.400000 4.733333 4.466667 5.466667 1.666667 3.533333

RMSE 3.933333 3.133333 3.266667 3.400000 2.600000 6.666667 5.000000

Table 8: Mean ranks, h = 1, jump comp.: 1, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 93.852213 95.122449 91.818835 97.760073 96.277012 87.835491 95.693124

RMSE 91.610151 90.783829 90.035955 88.919526 88.559696 97.871086 90.774669
sqrt R2 97.574262 97.906973 98.037781 99.035511 98.829004 91.549237 97.990989

RMSE 90.483290 89.760839 89.065248 88.680024 88.749774 99.119946 92.611495
ssqrt R2 97.632421 97.965075 98.096155 99.094019 98.846879 91.525877 98.049550

RMSE 91.370260 90.643266 89.946073 89.553171 89.632341 99.157345 93.497234
log R2 98.398739 98.657960 98.790574 98.771346 99.438485 92.245223 98.175103

RMSE 87.577762 87.004381 89.148465 86.763738 86.352341 97.334971 91.026672
slog R2 98.298810 98.666982 98.755943 99.110756 99.319519 91.745879 98.280633

RMSE 88.982045 88.244475 89.870667 87.884887 87.646569 98.174464 92.361293

Table 9: Mean percentages of row-wise maxima, h = 1, jump comp.: 1, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 0.466302 0.452846 0.441808 0.473351 0.455166 0.427561 0.465497

RMSE 0.007020 0.006943 0.006956 0.006810 0.006581 0.006877 0.006722
sqrt R2 0.605783 0.598345 0.604246 0.610592 0.604477 0.565282 0.608128

RMSE 0.006047 0.006031 0.005993 0.005944 0.005917 0.006207 0.006006
ssqrt R2 0.605783 0.598345 0.604246 0.610592 0.603747 0.573585 0.608128

RMSE 0.006047 0.006031 0.005993 0.005944 0.005912 0.006178 0.006006
log R2 0.636229 0.633434 0.635094 0.636724 0.639563 0.599369 0.636276

RMSE 0.005687 0.005689 0.006113 0.005653 0.005638 0.006076 0.005781
slog R2 0.642382 0.639631 0.641302 0.644997 0.644300 0.609292 0.643610

RMSE 0.005781 0.005771 0.006074 0.005725 0.005702 0.006033 0.005852
sign. (%) 18.158130 21.543148 27.217662

Table 10: Mean values, h = 1, jump comp.: 1, 5, 22, α = 0.001
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trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 4.933333 3.600000 4.066667 5.066667 2.933333 2.333333 5.066667

RMSE 4.666667 4.266667 5.066667 3.800000 3.133333 3.800000 3.266667
sqrt R2 4.266667 2.800000 3.866667 5.600000 4.200000 2.200000 5.066667

RMSE 4.333333 5.000000 4.266667 2.200000 3.000000 5.133333 4.066667
ssqrt R2 4.266667 2.800000 3.933333 5.666667 4.066667 2.133333 5.133333

RMSE 4.200000 5.066667 4.200000 2.133333 3.000000 5.333333 4.066667
log R2 4.666667 3.466667 3.800000 4.266667 5.000000 2.466667 4.333333

RMSE 3.000000 3.800000 4.200000 3.266667 3.333333 6.000000 4.400000
slog R2 4.333333 3.133333 3.866667 4.800000 4.866667 2.400000 4.600000

RMSE 3.600000 4.200000 4.133333 2.600000 3.333333 5.600000 4.533333

Table 11: Mean ranks, h = 1, jump comp.: 1, 5, 22, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 95.611331 93.578045 91.366226 97.751403 92.862201 86.164886 95.429420

RMSE 95.825862 94.893542 95.056696 93.290687 90.952981 95.275634 92.420344
sqrt R2 98.394479 97.143252 98.116676 99.153534 97.713205 89.800114 98.730444

RMSE 95.189636 94.983920 94.437025 93.606302 93.421900 98.415623 94.594044
ssqrt R2 98.402791 97.151399 98.124852 99.161741 97.635778 91.496679 98.738744

RMSE 95.516617 95.310495 94.764541 93.929913 93.659437 98.287875 94.920801
log R2 98.811088 98.326926 98.566346 98.869632 99.073356 91.490750 98.794188

RMSE 89.566629 89.653355 92.954102 89.121855 88.965575 96.376134 90.904869
slog R2 98.905265 98.419911 98.673751 99.292551 98.901242 92.137237 99.070843

RMSE 92.296370 92.203857 94.881338 91.507869 91.286998 96.764946 93.321610

Table 12: Mean percentages of row-wise maxima, h = 1, jump comp.: 1, 5, 22, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 0.593676 0.592219 0.594548 0.597223 0.585125 0.554292 0.594876

RMSE 0.005265 0.005234 0.005168 0.005133 0.005144 0.005870 0.005438
sqrt R2 0.699396 0.700193 0.703862 0.704083 0.704106 0.657525 0.697268

RMSE 0.004210 0.004191 0.004125 0.004129 0.004110 0.004853 0.004480
ssqrt R2 0.699396 0.700193 0.703862 0.704083 0.703716 0.656168 0.697268

RMSE 0.004210 0.004191 0.004125 0.004129 0.004111 0.004806 0.004480
log R2 0.737341 0.738029 0.741014 0.737294 0.742895 0.693856 0.732779

RMSE 0.003936 0.003921 0.003879 0.003896 0.003844 0.004537 0.004214
slog R2 0.733129 0.734314 0.737211 0.735551 0.737878 0.685796 0.729332

RMSE 0.003975 0.003954 0.003909 0.003921 0.003886 0.004568 0.004256
sign. (%) 18.158130 21.543148 27.217662

Table 13: Mean values, h = 5, jump comp.: 1, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 4.400000 3.666667 4.600000 4.266667 3.600000 2.600000 4.866667

RMSE 3.866667 3.666667 3.333333 3.533333 3.266667 6.066667 4.266667
sqrt R2 3.733333 3.533333 5.066667 4.933333 5.533333 1.400000 3.800000

RMSE 3.733333 3.933333 2.733333 3.400000 2.800000 6.666667 4.733333
ssqrt R2 3.800000 3.466667 5.066667 5.000000 5.266667 1.466667 3.933333

RMSE 3.733333 3.933333 2.733333 3.400000 2.800000 6.600000 4.800000
log R2 4.266667 4.066667 5.400000 3.733333 5.866667 1.400000 3.266667

RMSE 3.533333 3.666667 2.666667 3.733333 2.266667 6.666667 5.466667
slog R2 4.000000 3.800000 5.400000 4.533333 5.466667 1.400000 3.400000

RMSE 3.533333 3.533333 2.600000 3.733333 2.666667 6.733333 5.200000

Table 14: Mean ranks, h = 5, jump comp.: 1, α = 0.001
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trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 97.898199 97.766342 98.157788 98.676780 96.404826 90.523942 98.136914

RMSE 86.506547 85.998497 85.021699 84.694268 84.769031 97.984173 88.457947
sqrt R2 98.589916 98.722308 99.275642 99.311989 99.208294 91.725704 98.391467

RMSE 85.246330 84.915081 83.710159 83.746617 83.399258 98.926439 89.619487
ssqrt R2 98.621445 98.753756 99.307192 99.343539 99.193497 91.524713 98.422783

RMSE 86.225032 85.893482 84.684289 84.717544 84.400225 99.006650 90.599328
log R2 98.998022 99.098012 99.529973 98.987975 99.725167 92.372712 98.478339

RMSE 84.901445 84.616922 83.781083 84.122281 83.070629 98.533025 89.865020
slog R2 98.961966 99.138082 99.557865 99.306530 99.584145 91.579767 98.553132

RMSE 85.576710 85.180383 84.331435 84.549524 83.854842 98.850322 90.526258

Table 15: Mean percentages of row-wise maxima, h = 5, jump comp.: 1, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 0.593676 0.587760 0.590446 0.585853 0.586643 0.558297 0.598421

RMSE 0.005265 0.005160 0.005207 0.005127 0.004794 0.005260 0.005005
sqrt R2 0.699396 0.698359 0.703571 0.700877 0.701906 0.665510 0.702723

RMSE 0.004210 0.004205 0.004155 0.004165 0.004109 0.004410 0.004212
ssqrt R2 0.699396 0.698359 0.703571 0.700877 0.701700 0.662372 0.702723

RMSE 0.004210 0.004205 0.004155 0.004165 0.004100 0.004410 0.004212
log R2 0.737341 0.738338 0.740863 0.736746 0.744043 0.703878 0.738580

RMSE 0.003936 0.003955 0.003898 0.004104 0.003874 0.004247 0.003996
slog R2 0.733129 0.734416 0.737124 0.733690 0.737786 0.693942 0.734857

RMSE 0.003975 0.003980 0.003928 0.004060 0.003901 0.004211 0.004025
sign. (%) 18.158130 21.543148 27.217662

Table 16: Mean values, h = 5, jump comp.: 1, 5, 22, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 4.200000 3.600000 4.266667 3.866667 4.066667 2.933333 5.066667

RMSE 4.600000 4.266667 4.533333 3.866667 2.666667 4.800000 3.266667
sqrt R2 4.066667 3.533333 4.266667 4.800000 4.266667 2.600000 4.466667

RMSE 4.000000 4.333333 3.466667 3.066667 2.666667 5.866667 4.600000
ssqrt R2 4.066667 3.600000 4.266667 4.800000 4.266667 2.533333 4.466667

RMSE 4.133333 4.466667 3.533333 3.333333 2.400000 5.466667 4.666667
log R2 3.733333 4.333333 5.000000 3.466667 5.333333 2.533333 3.600000

RMSE 3.066667 4.200000 3.000000 4.133333 2.466667 6.200000 4.933333
slog R2 3.666667 4.000000 4.866667 4.466667 4.733333 2.600000 3.666667

RMSE 3.466667 4.133333 3.133333 4.000000 2.666667 5.800000 4.800000

Table 17: Mean ranks, h = 5, jump comp.: 1, 5, 22, α = 0.001

trafo measure RV RV-J RV-CJ RV-TCJ RV-RS RV-HL RV-HL-T
none R2 96.820071 96.040628 96.570819 95.548919 95.303561 89.738883 97.536248

RMSE 93.844226 92.387210 93.045547 91.930360 87.227498 96.016657 90.184605
sqrt R2 98.200708 98.135519 98.876115 98.438874 98.461824 92.385478 98.658720

RMSE 93.513194 93.489781 92.488565 92.659536 91.617810 98.995075 93.588236
ssqrt R2 98.176224 98.111115 98.851813 98.414646 98.412508 91.895316 98.634433

RMSE 93.188381 93.162716 92.163010 92.336813 91.109535 98.674852 93.263320
log R2 98.527858 98.705910 99.047959 98.471825 99.386408 93.252530 98.678263

RMSE 89.812458 90.198799 89.065098 92.682381 88.504099 97.403575 91.068596
slog R2 98.574631 98.800885 99.177670 98.679620 99.142167 92.153496 98.790790

RMSE 91.838330 91.982763 90.917483 93.633742 90.363257 97.835283 92.885093

Table 18: Mean percentages of row-wise maxima, h = 5, jump comp.: 1, 5, 22, α = 0.001
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7 Conclusion

Andersen et al. (2007) and Corsi et al. (2008) already illustrate that dividing quadratic variation
into integrated volatility and the sum of squared jumps yields a substantial improvement in
volatility forecasting. This paper shows that distiguishing positive and negative jumps by using
realized semi-variances leads to further improvements for the prediction of realized variance
without increasing computational costs or data requirements.
Extending the data source to intradaily open, high, low, and close quotes and using OHLC-
based estimators for integrated volatility and the sum of squared positive and negative jumps
of Klößner (2008) for the prediction of realized variance does not lead to better forecasts.
However, the comparison seems quite unfair, because in these models, the regressors are very
different from the explained quantity, realized variance.
Instead of the prediction of realized variance, it would be interesting to build univariate fore-
casting models for OHLC-based estimators of quadratic variation, or even better, multivariate
models for integrated volatility and the sum of squared positive and negative jumps. Fore-
casting models for related quantities, such as the relative contribution of positive and negative
jumps to the total price variation (similar to the investigations in Huang and Tauchen (2005))
based on the estimators of Klößner (2008) provide another interesting branch for future work.
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