
Fast and Reliable Computation of Generalized
Synthetic Controls

Martin Becker∗

Statistics and Econometrics
Saarland University

Stefan Klößner
Statistics and Econometrics

Saarland University

Preliminary version: January 30, 2017

Abstract

As existing implementations of synthetic control methods suffer from serious
weaknesses, we develop new methods for calculating synthetic control units. In
particular, we show how to detect and handle important special cases that have
not been addressed in the literature yet. We also elaborate on solving the nested
optimization associated with the standard case fast and reliably. With the R package
MSCMT, we provide an open source implementation of the presented methods,
which can be applied to generalizations of ’standard’ synthetic control methods,
too.

Keywords: Synthetic Control Methods; Fast Algorithms; Reliable Computation

JEL Codes: C31, C63, C87

∗Correspondence to: Martin Becker, Saarland University, Campus C3 1, 66123 Saarbrücken, Germany.
E-mail: martin.becker@mx.uni-saarland.de

1

1 Introduction

Synthetic control methods (SCM), introduced by Abadie and Gardeazabal (2003) and

Abadie et al. (2010), have become an indispensable tool for program evaluation. Recently,

numerous studies have appeared that use SCM to analyze the effects of interventions,

unforeseen events or structural breaks, e.g., Cavallo et al. (2013), Jinjarak et al. (2013),

Kleven et al. (2013), Abadie et al. (2015), Pinotti (2015), Acemoglu et al. (2016), Gobillon

and Magnac (2016), to mention just the tip of the iceberg. Very recently, they have

also been found to compare well against alternative panel data methods for program

evaluation, see Gardeazabal and Vega-Bayo (2016).

Implementations of SCM have been provided by the pioneers of SCM for various

software applications, namely Matlab, R (with package Synth) and Stata.1 In a recent

replication study, Becker and Klößner (2017a) illustrate that all these implementations

fail to find the correct synthetic control unit. However, as we illustrate in this paper, this

is not a sole exception: existing implementations of SCM are unreliable in general.

In this paper, we therefore provide helpful results on the theory of the optimization

problems that have to be solved when a synthetic control is calculated. On the one hand,

these theoretical results enable us to detect important special cases that have been over-

looked by the literature. We provide algorithmic solutions for detecting and solving these

special cases, leading to exact results for the synthetic control which can be calculated

extremely fast. Another benefit of the theoretical results is a potential reduction of the

problem’s dimension, which increases speed and numerical stability of the nested opti-

mization task associated with the default case. We elaborate on cleverly attacking this

demanding and time-consuming search for the synthetic control using numerical optimiz-

ers, with special emphasis on speed of computations and reliability of reported results.

All these routines have been implemented in R package MSCMT (Multivariate

Synthetic Control Method using Time Series), which is open source and publicly avail-

able.2 Furthermore, package MSCMT as well as all methods developed in this paper can

be applied not only to ’standard’ SCM applications, but also to the generalized MSCMT

approach of Klößner and Pfeifer (2015), which allows to consider several variables of

interest simultaneously and to treat predictor variables as time series.

The remainder of this paper unfolds as follows: in Section 2, we present the standard

SCM method as introduced by Abadie and Gardeazabal (2003) and Abadie et al. (2011)

as well as its generalization MSCMT of Klößner and Pfeifer (2015), and provide a unifying

framework for general synthetic control methods. Section 3 is devoted to results on the

theory of SCM optimization problems, detecting and solving special cases, and fast and

stable algorithms for computing synthetic controls. In Section 4, we compare our new

1See R Core Team (2016), Abadie et al. (2011) and Jens Hainmueller’s webpage, http://web.stan
ford.edu/~jhain/synthpage.html.

2See Becker and Klößner (2017b), https://cran.r-project.org/package=MSCMT.

2

http://web.stanford.edu/~jhain/synthpage.html
http://web.stanford.edu/~jhain/synthpage.html
https://cran.r-project.org/package=MSCMT

implementation of synthetic control methods to the already existing ones, with special

emphasis on reliability of results, while Section 5 concludes.

2 The Synthetic Control Method

Synthetic control methods have been introduced to the literature by Abadie and Gardeaz-

abal (2003), theory on their (asymptotic) properties has been developed in Abadie et al.

(2010), while recently, Gardeazabal and Vega-Bayo (2016) have shown that SCM com-

pares well against the panel data approach to program evaluation developed by Hsiao et

al. (2012). Synthetic control methods have also been generalized by Klößner and Pfeifer

(2015) to handle multiple variables of interest simultaneously and treat economic predic-

tors as time series (Multivariate Synthetic Control Method using Time Series). In the

following, we shortly describe both the ’standard’ SCM method of Abadie and Gardeaza-

bal (2003) and the generalized approach by Klößner and Pfeifer (2015), before providing

a unifying framework (’General SCM Task’) that later sections will build on.

2.1 ’Standard’ SCM

The synthetic control method as introduced by Abadie and Gardeazabal (2003) and

Abadie et al. (2010) aims at producing a synthetic control unit which is compared against

the actually treated unit. This synthetic control unit is created as a weighted combination

of a collection of J control units, the so-called donor pool. For the synthetic control unit

to approximate the treated unit post treatment, it is essential that the synthetic control

unit comes as close as possible to the treated unit in terms of pre-treatment values. This

pre-treatment fit is determined not only with respect to the main outcome of interest,

but also with respect to a set of so-called (economic) predictors which consists of (eco-

nomic) variables with explanatory power for the outcome of interest. The standard SCM

approach introduces two different kinds of predictors: the first kind is given by m linear

combinations of the outcome of interest, Y , in M pre-treatment periods, while the second

kind consists of r other covariates with explanatory power for Y . All K predictors (with

K = r+m) are combined to form a (K× 1) vector X1 for the treated unit and a (K×J)

matrix X0 for all control units.

In one part of the optimization process, called the inner optimization, one aims at

finding a linear combination of the columns of X0 that representsX1 best, i.e., one searches

for a combination of the donor units such that the difference of the predictors’ values of

the treated unit and the counterfactual becomes as small as possible. The distance metric

used to measure this difference is: ‖X1−X0W‖V =
√

(X1 −X0W)′ V (X1 −X0W), where

the weights used to construct the synthetic control unit are denoted by the vector W and

the weights of the predictors are given by the nonnegative diagonal matrix V . The latter

3

takes into consideration that not all predictors have the same predictive power for the

outcome variable Y .

The inner optimization is then the task of finding, for given predictor weights V ,

non-negative donor weights W summing up to unity such that3√
(X1 −X0W)′ V (X1 −X0W)

W→ min . (1)

The solution to this problem is denoted by W ∗(V).

The second part of the optimization, the outer optimization, deals with finding optimal

predictor weights V . It usually follows a data-driven approach proposed by Abadie and

Gardeazabal (2003) and Abadie et al. (2010): V is chosen among all positive definite and

diagonal matrices such that the mean squared prediction error (MSPE) of the outcome

variable Y is minimized over the pre-intervention periods.4 To this end, we denote by Z1

the M values of Y for the treated unit over the pre-intervention periods, while Z0 denotes

the analogous matrix M×J-matrix for the control units. The outer optimization problem

then consists of:

(Z1 − Z0W
∗(V))′ (Z1 − Z0W

∗(V))
V→ min . (2)

2.2 Generalizations of SCM

In Klößner and Pfeifer (2015), the original setup of Abadie and Gardeazabal (2003) and

Abadie et al. (2010) has been extended to incorporate more than one dependent variable

as well as to treat the predictor data as time series, while maintaining the underlying

structure with respect to the donor weights W , the predictor weights V , and the inner

and outer optimizations. In particular, Klößner and Pfeifer (2015) extend the equations

(1) and (2) for the approximation errors with respect to predictor and outcome data to

the following ones:5

∆X(v1, . . . , vK ,W) :=

√√√√ K∑
k=1

vk
1

Nk

Nk∑
n=1

(
Xk,n,1 −

J+1∑
j=2

Xk,n,jwj

)2

, (3)

∆Y (W) :=

√√√√√ 2∑
l=1

1

Mpre
l

Mpre
l∑

m=1

(
Yl,m,1 −

J+1∑
j=2

Yl,m,jwj

)2

. (4)

3Notice that, prior to any calculations, all predictors are rescaled to unit variance.
4In the literature, there exists another approach for determining the predictor weights which is called

the ’regression-based’ approach. However, it is used quite rarely, the corresponding formulas can be found
in Kaul et al. (2016).

5Notice that, prior to any calculations, all variables are rescaled such that every dependent variable
and every predictor has unit variance.

4

To explain the formulas (3) and (4), we adopt the notation of Klößner and Pfeifer (2015)

and denote the m-th outcome Y of the dependent variable l for unit j by Yl,m,j, with

l = 1, 2 running over the variables of interest and m = 1, . . . ,Mpre
l running over the Mpre

l

pre-treatment observations of variable l. As above, j = 1, . . . , J + 1 runs through the

units, with j = 1 denoting the treated unit and j = 2, . . . , J + 1 for the control units.

The values of K economic predictors are denoted similarly by Xk,n,j, with k = 1, . . . , K

running over all economic predictors and n = 1, . . . , Nk running over the pre-treatment

observation times of economic predictor k.

In this paper, we generalize equation (4) a little bit further to

∆Y (W) :=

√√√√√ L∑
l=1

αl
1

Mpre
l

Mpre
l∑

m=1

βl,m

(
Yl,m,1 −

J+1∑
j=2

Yl,m,jwj

)2

, (5)

allowing for

• a number L of possibly more than two dependent variables,

• weights α1, . . . , αL describing the importance of the dependent variables, in order

to be able to grant more important dependent variables more weight than less

important ones with respect to the outer optimization,

• weights βl,1, . . . , βl,Mpre
l

for the pre-treatment values of the l-th dependent variable,

e.g. in order to give more importance to discrepancies close to the point of interven-

tion.

We also slightly generalize equation (3) to

∆X(v1, . . . , vK ,W) :=

√√√√ K∑
k=1

vk
1

Nk

Nk∑
n=1

γk,n

(
Xk,n,1 −

J+1∑
j=2

Xk,n,jwj

)2

, (6)

with weights γk,1, . . . , γk,Nk analogously to the weights β above, allowing the inner opti-

mization to be tailored such that the fit of the k-th independent variable at times close

to the point of intervention becomes more important.

Consistent with the usual SCM approach, the inner optimization aims, for given

v1, . . . , vK , at finding W ∗(v1, . . . , vK) = (w∗2, . . . , w
∗
J+1)

′ such that the inner objective

function (6) is minimized with respect to W .6 The outer optimization in turn minimizes

∆Y (W ∗(v1, . . . , vK)) or equivalently ∆2
Y (W ∗(v1, . . . , vK)), the (root) mean square error of

the dependent variables’ approximation.

6Obviously, instead of minimizing ∆X(v1, . . . , vK ,W), the root mean square error of the predictors’
approximation as given in (6), one can equivalently minimize ∆2

X(v1, . . . , vK ,W), the mean square error
of the approximation.

5

2.3 General SCM Problem Formulation

All the SCM variants discussed above can be translated into a common, very general

structure which will be called ’general SCM problem formulation’ in the sequel. For

instance, by defining the M×J-matrix Z̃ := Z0−Z11
′,7 the K×J-matrix X̃ := X0−X11

′,

and the mapping V by

V (v1, . . . , vK) :=


v1 0 . . . 0

0
.

...
...

. 0

0 . . . 0 vK

 ∈ RK×K ,

the standard SCM approach given by equations (1) and (2) can be described as the

following nested optimization task:

• in the inner optimization, find, for given v1, . . . , vK , W ∗(v1, . . . , vK) as the minimizer

of w′X̃ ′V (v1, . . . , vK)X̃w over all vectors w whose non-negative entries sum to unity,

• in the outer optimization, minimize W ∗(v1, . . . , vK)′Z̃ ′Z̃W ∗(v1, . . . , vK) with respect

to v1, . . . , vK .

Similarly, the very general SCM method introduced in the previous section might be

brought into analogous form by denoting M :=
∑L

l=1M
pre
l and N :=

∑K
k=1Nk as well as

defining the M × J-matrix

Z̃ :=



√
α1β1,1
Mpre

1
(Y1,1,2 − Y1,1,1) . . .

√
α1β1,1
Mpre

1
(Y1,1,J+1 − Y1,1,1)

...
...

...√
α1β1,Mpre

1

Mpre
1

(
Y1,Mpre

1 ,2 − Y1,Mpre
1 ,1

)
. . .

√
α1β1,Mpre

1

Mpre
1

(
Y1,Mpre

1 ,J+1 − Y1,Mpre
1 ,1

)
...

...
...√

αLβL,1
Mpre
L

(YL,1,2 − YL,1,1) . . .
√

αLβL,1
Mpre
L

(YL,1,J+1 − YL,1,1)
...

...
...√

αLβL,Mpre
L

Mpre
L

(
YL,Mpre

L ,2 − YL,Mpre
L ,1

)
. . .

√
αLβL,Mpre

L

Mpre
L

(
YL,Mpre

L ,J+1 − YL,Mpre
L ,1

)



,

7
1 denotes the vector of ones.

6

the N × J-matrix

X̃ :=



√
γ1,1
N1

(X1,1,2 −X1,1,1) . . .
√

γ1,1
N1

(X1,1,J+1 −X1,1,1)

...
...

...√
γ1,N1

N1
(X1,N1,2 −X1,N1,1) . . .

√
γ1,N1

N1
(X1,N1,J+1 −X1,N1,1)

...
...

...√
γK,1
NK

(XK,1,2 −XK,1,1) . . .
√

γK,1
NK

(XK,1,J+1 −XK,1,1)

...
...

...√
γK,NK
NK

(XK,NK ,2 −XK,NK ,1) . . .
√

γK,NK
NK

(XK,NK ,J+1 −XK,NK ,1)


,

and the linear mapping

V (v1, . . . , vK) :=


v1IN1 0 . . . 0

0
.

...
...

. 0

0 . . . 0 vKINK

 ,

with INk denoting the Nk-dimensional identity matrix.

In the sequel, we will therefore, both with respect to theory and algorithms, consider

the following general SCM optimization task.

General SCM Task: For the following input variables,

• an N × J-matrix X̃ (used in the inner optimization),

• an M × J-matrix Z̃ (used in the outer optimization),

• a linear function V mappping v1, . . . , vK to an N ×N diagonal matrix,

determine v∗1, . . . , v
∗
K such that

W ∗(v1, . . . , vK)Z̃ ′Z̃W ∗(v1, . . . , vK) (7)

becomes as small as possible (outer optimization), with W ∗(v1, . . . , vK) being defined as

W ∗(v1, . . . , vK) = arg min
w≥0
1
′w=1

w′X̃ ′V (v1, . . . , vK)X̃w, (8)

i.e. as the minimizer of the inner objective function.8

8If arg minx F (x) is a singleton {x∗}, arg minx F (x) shall denote its single element x∗ throughout the
paper.

7

3 Solving Generalized SCM Problems

In the following, we will discuss how finding the solution to a generalized SCM task can be

decomposed into several steps. In particular, we show how to detect and handle important

special cases, render the optimization problem mathematically sound, tackle the nested

optimization task associated with the standard case, and provide a stylized algorithm for

solving generalized SCM tasks.

3.1 Dimension Reduction and Special Cases

In order to detect important special cases as well as to potentially speed up the inner op-

timization, we introduce the notion of ’sunny’ donors. To this end, we take a closer look

at the structure of the inner optimization task, which is, for given v1, . . . , vK , to miminize

the quadratic form w′X̃ ′V (v1, . . . , vK)X̃w = ||V (v1, . . . , vK)
1
2 X̃w||2 over all non-negative

weights w ∈ RJ whose components sum up to unity. The inner objective function thus

aims at minimizing an appropriately weighted sum of the squared differences X̃w, where

the diagonal matrix V (v1, . . . , vK)
1
2 rescales the vector of differences according to the pre-

dictor weights given by v1, . . . , vK . Notice that every column of X̃ corresponds to the data

of some donor, or, more precisely, to the difference of that donor’s data to the treated unit’s

data. Additionally, X̃w is nothing else than a convex combination of the columns of X̃,

measuring the difference between synthetic and treated unit with respect to the economic

predictors. We therefore introduce the following notion of so-called ’sunny’ and ’shady’

donors: denoting by H := conv({x̃1, . . . , x̃J}) =
{∑J

j=1wjx̃j
∣∣ (∀j : wj ≥ 0) ,

∑J
j=1wj =

1
}

the convex hull of the columns of X̃, we call x̃j (j = 1, . . . , J) sunny (with respect to

H or with respect to x̃1, . . . , x̃J) if a beam of light emanating at the origin can reach x̃j

without crossing H first, i.e. if x̃j lies on the sunny side of H if the sun is located at the

origin. Formalizing this leads to the following definition:

Definition 1. Given a set {x̃1, . . . , x̃J} of points in N-dimensional space with convex

hull H := conv({x̃1, . . . , x̃J}), we call x̃j (j = 1, . . . , J) shady (with respect to H or with

respect to x̃1, . . . , x̃J) if there exists 0 < α < 1 such that αx̃j ∈ H. We call x̃j sunny

(with respect to H or with respect to x̃1, . . . , x̃J) if it is not shady.

Calling the j-th donor sunny if x̃j is sunny, it is easy to check whether a donor is

sunny or not. One simply solves the linear program

minα subject to αx̃j =
J∑
j̃=1

wj̃x̃j̃, α ≥ 0, w1 ≥ 0, . . . , wJ ≥ 0,
J∑
j̃=1

wj̃ = 1 (9)

to get optimal values α∗, w∗1, . . . , w
∗
J :9 if α∗ = 1, then the corresponding donor is sunny,

9Note that by choosing α = 1, wj = 1, and wj̃ = 0 for j̃ 6= j, there always exists an admissible solution

8

while it is shady whenever α∗ < 1.

One important special case neglected by the literature, but deserving particular at-

tention, is given when there are no sunny donors at all. The following proposition shows

that this happens if and only if 0 ∈ H, i.e. if and only if there exists a synthetic control

with donor weights w such that the approximation error X̃w vanishes.

Proposition 1. 0 ∈ H if and only if no x̃j is sunny.

Proof. ’⇒’ For any x̃j and 0 < α < 1, the fact that 0 ∈ H and x̃j ∈ H implies that

H 3 αx̃j + (1− α) 0 = αx̃j, thus x̃j is shady for all j.

’⇐’ First, we define α∗j := inf({α : 0 < α ≤ 1 ∧ αx̃j ∈ H}). As no x̃j is sunny, we

have α∗j < 1 for all j = 1, . . . , J . Furthermore, because H is closed, α∗j x̃j ∈ H for

all j. Therefore, the proof is complete as soon as we know that α∗j = 0 for at least

one j. To proceed, we thus assume that α∗j > 0 for j = 1, . . . , J . As α∗j x̃j ∈ H for

all j, there exist w
(j)

j̃
, non-negative for all j, j̃ = 1, . . . , J , with

∑J
j̃=1w

(j)

j̃
= 1 and

α∗j x̃j =
∑J

j̃=1w
(j)

j̃
x̃j̃ for all j = 1, . . . , J , entailing x̃j = 1

α∗j

∑J
j̃=1w

(j)

j̃
x̃j̃. From this,

we find

α∗1x̃1 =
J∑
j=1

w
(1)
j x̃j =

J∑
j=1

w
(1)
j

1

α∗j

J∑
j̃=1

w
(j)

j̃
x̃j̃ =

J∑
j̃=1

(
J∑
j=1

w
(1)
j

α∗j
w

(j)

j̃

)
x̃j̃ =

J∑
j̃=1

τj̃x̃j̃,

with τj̃ :=
∑J

j=1

w
(1)
j

α∗j
w

(j)

j̃
for all j̃ = 1, . . . , J . For τ :=

∑J
j̃=1 τj̃, we have

τ =
J∑
j̃=1

J∑
j=1

w
(1)
j

α∗j
w

(j)

j̃
=

J∑
j=1

J∑
j̃=1

w
(1)
j

α∗j
w

(j)

j̃
=

J∑
j=1

w
(1)
j

α∗j
>

J∑
j=1

w
(1)
j = 1,

with the strict inequality holding because α∗j < 1 as well as w
(1)
j ≥ 0 for all j, and

w
(1)
j > 0 for at least one j. Overall, we thus have

α∗1
τ
x̃1 =

∑J
j̃=1

τj̃
τ
x̃j̃, i.e.,

α∗1
τ
x̃1 ∈ H.

The minimality of α∗1 now implies
α∗1
τ
≥ α∗1 and therefore τ ≤ 1, so that we arrive

at a contradiction. Thus, at least one of the α∗j must be zero, concluding the proof.

Proposition 1 above shows that there exist no sunny donors if and only if there exist

donor weights w such that X̃w = 0, i.e. donor weights such that with respect to the

predictors, the treated unit is perfectly equal to the synthetic control given by the donor

weights w. In this case, the result of the inner optimization does not depend on v1, . . . , vK ,

as all w with X̃w = 0 are minimizers of the inner objective function. In particular, it

may be the case that there exist different vectors of donor weights with such a perfect

predictor fit. We therefore treat this special case of ’no sunny donors’ by searching

for the linear program (9).

9

among all those vectors of donor weights for one that is optimal with respect to the

outer objective function, i.e. for the one with the best fit with respect to the outcome

data: mathematically, we thus look for non-negative weights w summing to unity and

minimizing w′Z̃ ′Z̃w subject to X̃w = 0, i.e., we solve the following quadratic program:

min
w≥0

1
′w=1, X̃w=0

w′Z̃ ′Z̃w. (10)

For the ’standard’ case with at least one sunny donor, Proposition 2 below shows that

if w∗ is a minimizer of the inner objective function with (w∗)′X̃ ′V (v1, . . . , vK)X̃w∗ > 0,

then w∗j can only be positive for sunny donors x̃j. This result is very useful for reducing the

dimension of the inner optimization task, because we can safely neglect shady donors and

consider only the subset of sunny donors, corresponding to keeping only those columns of

X̃ that belong to sunny donors, and ignoring the ones belonging to shady donors.

Proposition 2. Let V be a diagonal matrix with positive entries and x̃∗ :=
∑J

j=1w
∗
j x̃j

an optimizer of x̃′V x̃ → min in H, for which (x̃∗)′V x̃∗ > 0. Then w∗j = 0 for all shady

donors x̃j.

Proof. Let j be such that x̃j is not sunny. Then there exist w
(j)
1 , . . . , w

(j)
J ≥ 0 and

0 < α < 1 such that
∑J

j̃=1w
(j)

j̃
= 1 and

∑J
j̃=1w

(j)

j̃
x̃j̃ = αx̃j. Using these, we define

w̃
(j)

j̃
:=


w∗
j̃
+w∗j

1
α
w

(j)

j̃

1+w∗j (1
α
−1)

: j̃ 6= j

w∗j
1
α
w

(j)
j

1+w∗j (1
α
−1)

: j̃ = j

,

which are non-negative and sum to unity for all j = 1, . . . , J :
∑J

j̃=1 w̃
(j)

j̃
= 1. We then

have 1

1+w∗j (1
α
−1)

x̃∗ =
∑J

j̃=1 w̃
(j)

j̃
x̃j̃, because 1

α

∑J
j̃=1w

(j)

j̃
x̃j̃ = x̃j. Therefore, 1

1+w∗j (1
α
−1)

x̃∗ =∑J
j̃=1 w̃

(j)

j̃
x̃j̃ lies in H, for which

(
1

1+w∗j (1
α
−1)

x̃∗
)′
V 1

1+w∗j (1
α
−1)

x̃∗ = 1

(1+w∗j (1
α
−1))

2 (x̃∗)′ V x̃∗.

Thus, as x̃∗ minimizes x̃′V x̃ in H, 1 + w∗j
(
1
α
− 1
)

must not exceed 1, which entails w∗j =

0.

As stated above, the advantage of Proposition 2 lies in the fact that it allows to

reduce the dimension of the inner optimization task: all shady donors can be neglected

and the corresponding columns of X̃ and Z̃ can be dropped.10 Additionally, it can also

happen that the set of sunny donors is a singleton: in this case, regardless of the predictor

weights v1, . . . , vK , the solution of the inner optimization task will always be given by the

only sunny donor. Then, it is unnecessary to run the outer optimization task, as the

10For ease of notation, we do not introduce additional notation for X̃ and Z̃ after the dropping of
corresponding columns, denoting the dimension-reduced matrices still as X̃ and Z̃.

10

treated unit will be synthesized by the single sunny donor, while v1, . . . , vK can be chosen

arbitrarily.

All in all, we discern three cases: first, if there are no sunny donors, we search donor

weights w that minimize the outer objective function subject to a perfect fit with respect

to the predictors, i.e. we look for non-negative donor weights w summing up to unity

that minimize w′Z̃ ′Z̃w subject to X̃w = 0. Thus, a quadratic optimization problem with

linear restrictions has to be solved, while there is no need to search for optimal predictor

weights. In the second case, when there is only one sunny donor, there is again no need to

optimize over predictor weights, as the solution of the inner optimization task is always

given be the uniquely sunny donor, irrespective of any predictor weights. In the third

and last case, the outer optimization task has to be carried out, but we potentially gain

a significant amount of computing speed by considering only sunny donors and dropping

all columns of X̃ that belong to shady donors.

3.2 The Domain of the Outer Optimization

The domain of the outer optimization is closely connected to the domain of the input

variables v1, . . . , vK of the inner optimizer. These input variables correspond, poten-

tially apart from simple transformations, to the weights of the K predictors. Abadie and

Gardeazabal (2003) require these predictor weights to be nonnegative, however, there

is obviously no unique minimizer of the inner optimization when all predictor weights

vanish. So, in a first step, the zero vector has to be excluded.

Obviously, the function W ∗(v1, . . . , vK) = W ∗(v) (with v = (v1, . . . , vK)), which maps

the input variables v1, . . . , vK on the solution of the inner optimization, is (positive)

homogeneous of order zero, i.e., for all α > 0 and v1 ≥ 0, . . . , vK ≥ 0 with v 6= 0, the

identity

W ∗(v1, . . . , vK) = W ∗(αv1, . . . , αvK) (11)

holds. In other words, the outer optimizer’s objective function, when restricted to rays

{(αv1, . . . , αvK)|α > 0}, is constant for every (v1, . . . , vK) with v1 ≥ 0, . . . , vK ≥ 0 and

v 6= 0. Therefore, the (nonnegative) input variables v1, . . . , vK of the inner optimizer can

be normalized arbitrarily. Without loss of generality, we assume max{v1, . . . , vK} ≡ 1,

which is easily obtained by the mapping

(v1, . . . , vK) 7→
(

v1
max{v1, . . . , vK}

, . . . ,
vK

max{v1, . . . , vK}

)
(12)

considering that max{v1, . . . , vK} > 0 because v 6= 0.

As we experienced, it is not sufficient to require that at least one predictor weight

is different from zero, because W ∗ and, as a consequence, the outer objective function

11

are often discontinuous around predictor weights that are not entirely positive.11 Thus,

for W ∗ and the outer objective function to be continuous on their domain of defini-

tion, v1, . . . , vK must be bounded away from zero. Additionally, the ratio min(v1,...,vK)
max(v1,...,vK)

should not become too small, as this would lead to arbitrarily ill-conditioned matrices

V (v1, . . . , vK)
1
2 X̃ appearing in the inner optimization. Thus, both in order to work with

continuous functions and to guarantee numerical stability of the inner optimization, we re-

strict the ratio min(v1,...,vK)
max(v1,...,vK)

not to fall below some lower bound lb.12 We propose lb = 10−8

as a reasonable choice for this lower bound in order to regularly obtain feasible predictor

weights v1, . . . , vK .

3.3 Feasibility of the Unrestricted Outer Optimum and Finding

Predictor Weights

Finding a synthetic control is not only a procedure consisting of an inner and an outer

optimization, it also pursues two goals: the synthetic control unit should resemble the

treated unit, prior to the treatment, both with respect to the predictors (inner ob-

jective function w′X̃ ′V (v1, . . . , vK)X̃w) and the outcome(s) (outer objective function

W ∗(v1, . . . , vK)′Z̃ ′Z̃W (v1, . . . , vK)). Obviously, the outer objective function can not fall

below w′outerZ̃
′Z̃wouter, where Z̃ has not (yet) been restricted to sunny donors and

wouter := arg min
w≥0
1
′w=1

w′Z̃ ′Z̃w (13)

denotes the so-called unrestricted outer optimum. Ideally, we would like optimal

predictor weights v∗1, . . . , v
∗
K to be such that W ∗(v∗1, . . . , v

∗
K) = wouter, a case for which the

inner and outer objective function are not at odds with each other: in this case, we call

the unrestricted outer optimum wouter feasible with respect to the inner minimization. As

computing wouter is rather straightforward, it would be very helpful if there was also an

easy way of checking whether wouter is feasible. The key to construct such a check is the

following proposition.

Proposition 3. Let B be a symmetric, positive semi-definite J-by-J matrix. A J-

dimensional vector w∗ with w∗1, . . . , w
∗
J ≥ 0 and

∑J
j=1w

∗
j = 1 is a minimizer of w′Bw

in {w = (w1, . . . , wJ)′ : w1, . . . , wJ ≥ 0,
∑J

j=1wj = 1} if and only if (Bw∗)j ≥ (w∗)′Bw∗

for j = 1, . . . , J . In this case, we additionally have (Bw∗)j = (w∗)′Bw∗ for all j with

w∗j > 0.

Proof. Since B is symmetric and positive semi-definite, the Karush-Kuhn-Tucker condi-

11For a corresponding example, see the web appendix.
12Below, we will introduce methods to check whether this restriction was actually binding or not.

12

tions

Bw − t+ 1u = 0 (14)

t′w = 0 (15)

with t = (t1, . . . , tJ) ≥ 0, u ∈ R, are necessary and sufficient.13 Multiplying equation (14)

from left by w′ yields u = −w′Bw, which completes the proof.

Applying Proposition 3 to B := X̃ ′V (v1, . . . , vK)X̃ shows that w minimizes the inner

objective function for given v1, . . . , vK if and only if no component of X̃ ′V (v1, . . . , vK)X̃w

falls below w′X̃ ′V (v1, . . . , vK)X̃w, with equality for all donors j whose donor weights wj

are positive. Put differently, the above conditions allow to check whether a given vector w

of donor weights is feasible, i.e. whether there exist predictor weights v1, . . . , vK such that

w = W ∗(v1, . . . , vK). Moreover, checking this is an easy task, because X̃ ′V (v1, . . . , vK)X̃w

as well as w′X̃ ′V (v1, . . . , vK)X̃w inherit from V the property that they are linear functions

of v1, . . . , vK . Therefore, checking whether a given vector w of donor weights is feasible can

be done by checking whether the following linear program in terms of v1, . . . , vK admits

a feasible solution:

min
K∑
k=1

ckvk subject to


∑K

k=1 vk(ej − w)′Bkw ≥ 0 for all j = 1, . . . , J,

v1 ≥ lb, . . . , vK ≥ lb,

v1 ≤ 1, . . . , vK ≤ 1,

(16)

where c1, . . . , cK are arbitrary numbers, ej denotes the j-th unit vector in RJ , and B1 :=

X̃ ′V (1, 0, . . . , 0)X̃, . . . , BK := X̃ ′V (0, . . . , 0, 1)X̃.

Thus, by putting w := wouter in (16), it is possible to check whether the unrestricted

outer optimum, wouter, is feasible.14 If so, wouter are optimal weights for synthesizing,

and the synthetization task is solved.15 If not, the inner and outer objective functions

constitute conflicting goals, and the nested optimization task consisting of the outer op-

timization described in equation (7) and the inner optimization described in equation (8)

has to be solved.

3.4 The Choice of the Inner Optimizer

Calculating the objective function for the outer optimization requires solving the inner

optimization. Thus, in order to make the results of the outer optimization trustworthy, the

13See, e.g., (Wolfe, 1959, Theorem 2).
14 The linear program (16) can easily be modified to check whether the lower bound lb is actually bind-

ing: to this end, one can introduce an additional variable v, change the objective function to maximizing
v, and add the restrictions v ≤ v1, . . . , v ≤ vK . Then, any optimal v∗ will automatically be chosen as the
minimum of v1, . . . , vK , and the lower bound lb is binding if and only if v∗ = lb.

15An example for a feasible unrestricted outer optimum can be found in Becker and Klößner (2017a).

13

solutions of the inner optimization must be very reliable. Even small errors in the results of

the inner optimization may fool the outer optimizer16, while large errors may have critical

impact on the outer optimizer’s performance. Furthermore, the inner optimization has

to be done once for every evaluation of the objective function of the outer optimization,

which typically leads to a huge number of invocations of the inner optimization. This

calls for an efficient inner optimization procedure which is not only reliable, but also fast.

Obviously, the inner optimization problem (8) is a quadratic program. There are many

different algorithms for quadratic programming, some of which already have implementa-

tions in R. Package Synth, e.g., makes use of function ipop contained in package kernlab

and, alternatively, function LowRankQP contained in package LowRankQP.17 As we ex-

perienced, these algorithms and their implementations, as well as some further methods

for quadratic programming we have tested, regularly produce (more or less considerably)

suboptimal results or even errors.18

The key to our solution to this problem is to exploit the well-known fact that problem

(8) is a member of a particular subclass of quadratic programs by using its equivalent

notation

W ∗(v1, . . . , vK) = arg min
w≥0
1
′w=1

||V (v1, . . . , vK)
1
2 X̃w||2 (8′)

as a nonnegatively constrained linear least squares problem with linear equality con-

straints.19

An algorithm (called WNNLS) for this particular class of problems has been introduced

in Haskell and Hanson (1981), a corresponding Fortran implementation was presented in

Hanson and Haskell (1982). Fortunately, the simple but tedious adaptions necessary to

use this implementation with the R-to-Fortran interface have already been done in package

limSolve20. Extensive tests have shown that WNNLS is a very reliable and very fast inner

optimizer for the nested optimization problem to be solved.

We illustrate the excellent performance of WNNLS compared to ipop and LowRankQP

with a benchmark based on the first empirical application discussed later in Section 4. For

this purpose, we implemented a special variant for solving the inner optimization task:

for every vector of predictor weights considered during the outer optimization, we let all

three optimizers (ipop, LowRankQP, WNNLS) provide solutions of the inner optimization21

and stay with the best solution, but record the inner objective function values given by

all optimizers. To obtain information about the accuracy of the inner optimizers, we

16Using outer optimizers suited for noisy objective functions may remedy or at least mitigate this effect.
17See Karatzoglou et al. (2004) and Ormerod and Wand (2014).
18See the corresponding section of the web appendix and the benchmark in Section 4 below.
19Note that the optimization problems (10) and (13) belong to this particular subclass as well, which

enables the application of the WNNLS algorithm proposed below for problems (10) and (13), too.
20See Soetaert et al. (2009). We are deeply grateful to Karline Soetaert for the permission to include

this adapted code in our reference implementation, the R package MSCMT.
21We used the default parameters in function synth of R package Synth for ipop and LowRankQP.

14

calculated the relative increase (compared to the minimum) of the three alternative loss

function values for all 313573 invocations of the inner optimizer. WNNLS’s superiority

in terms of accuracy is striking, as WNNLS performed best in all invocations22. Figure

1 illustrates the relative increases for ipop and LowRankQP using a density plot with a

logarithmically scaled abscissa: LowRankQP is perfoming second best with a mean relative

increase of 1.978×10−8 and a maximal relative increase of 1.635×10−4, while ipop results

in a mean relative increase of 0.006333 and a maximal relative increase of 15.45.

0.0

0.1

0.2

0.3

0.4

1e−12 1e−07 1e−02

relative increase of predictor loss

de
ns

ity

method

ipop

LowRankQP

Figure 1: Comparison of relative increases compared to the best predictor loss for ipop

and LowRankQP.

To obtain information about the speed of the inner optimizers, we measured the time

required for the evaluation of the inner optimization, separately for all three optimizers,

for all recorded predictor weights.23 Table 1 summarizes the results of the measurement

of the CPU time consumption. Again, WNNLS’s superiority is obvious, as it is about 21

times faster than LowRankQP and about 350 times faster than ipop. All in all, WNNLS

clearly dominates LowRankQP, which itself outperforms ipop, both in terms of accuracy

and speed. WNNLS is thus the method of choice for solving the inner optimization problem.

22In 313557 out of 313573 optimization tasks, WNNLS provided the best solution. In the remaining
16 optimization tasks, WNNLS was ‘only’ best up to machine precision with a maximal relative increase
(compared to the result of LowRankQP) of 3.476 × 10−16. Using ipop even resulted in an error for 146
out of 313573 optimization tasks.

23We used a single core of an Intel R© i7 860@2.80GHz.

15

Inner Optimizer ipop LowRankQP WNNLS

Computation time in seconds 1746.97 106.13 4.95
(for 313573 evaluations)
Evaluations per second 179 2955 63348

Table 1: Evaluation speed of the different inner optimizers.

3.5 Details on the Outer Optimization

Even if the inner optimization problem is solved reliably, the outer optimization remains

challenging, because the outer objective function typically has many local optima. There-

fore, using a simple local optimizer with a single set of starting values is not a promising

strategy when looking for the global optimum.

Another difficulty, which we will address first, is the domain (also referred to as the

search space) of the outer optimizer and its relation to the input of the inner optimizer.

At first sight, the search space of the outer optimizer seems to be identical to the domain

of feasible values for the inner optimizer’s input variables v1, . . . , vK . However, since it

is possible (and common practice) to transform the elements of the search space of an

optimizer before evaluating the objective function, this identity is only optional.

In Subsection 3.2 above, we already proposed to restrict the feasible predictor weights

for the inner optimization problem to the set

V :=
{

(v1, . . . , vK) ∈ [lb, 1]K
∣∣ max{v1, . . . , vK} = 1

}
(17)

of predictor weights for a given lower bound lb of (about) 10−8. This restriction can

either be incorporated explicitly with a corresponding definition of the search space for

the outer optimizer or implicitly by transforming elements of a (potentially much) bigger

search space Ṽ into elements of V .

With the latter method it is very easy to use the broad class of box constrained op-

timizers, because the mapping (12) obviously transforms elements of Ṽ = [lb, 1]K into

elements of V . Since it is just as easy to construct mappings of Ṽ = RK into V , even

unconstrained optimizers may be employed if desired. However, these many-to-one map-

pings of the outer optimizer’s search space into the set of input values for the objective

function clearly lead to many-to-one mappings between elements of the search space and

values of the objective function, which may handycap the outer optimizer considerably.

Explicitly using V as the outer optimizer’s search space however has the disadvantage

that the constraint max{v1, . . . , vK} = 1 is not a simple box constraint, which at first

prohibits the usage of many optimizers only capable of managing box constraints. To

remedy this problem, we propose to split the outer optimization problem into K sub-

problems which have a reduced problem dimension of K − 1 and require only simple box

16

constraints. In subproblem k, k ∈ {1, . . . , K}, the input variable vk is fixed to 1, whereas

the search space (for the remaining K− 1 input variables) is set to Ṽk := [lb, 1]K−1. More

precisely, in the k-th subproblem, elements of the search space Ṽk are mapped to elements

of

Vk :=
{

(v1, . . . , vK) ∈ [lb, 1]K
∣∣ vk = 1

}
(18)

via the mapping

Ṽk → Vk; (ṽ1, . . . , ṽK−1) 7→
(
ṽ1, . . . , ṽk−1︸ ︷︷ ︸
v1,...,vk−1

, 1︸︷︷︸
vk

, ṽk, . . . , ṽK−1︸ ︷︷ ︸
vk+1,...,vK

)
. (19)

Obviously, Vk ⊂ V because of max{v1, . . . , vK} = vk = 1 for each (v1, . . . , vK) ∈ Vk, and

∪Ki=1Vk = V , so all feasible predictor weights are reachable by the outer optimization.24

The disadvantage of our proposal is the additional computational burden of solving K

optimization problems of dimensionK−1 instead of solving only one problem of dimension

K, but we experienced that getting rid of the many-to-one transformation is well worth

the effort.

As a last, but very beneficial refinement for the outer optimizer’s search space and its

transformation, we propose to use a logarithmic representation of Ṽk in the k-th subprob-

lem, in order to help the outer optimizer to reach values near the lower bound lb much

more easily. More precisely, this finally leads, for k = 1, . . . , K, to Ṽk := [log10(lb), 0]K−1

as the search space of dimension K − 1 and to the mapping

Ṽk → Vk; (ṽ1, . . . , ṽK−1) 7→
(

10ṽ1 , . . . , 10ṽk−1︸ ︷︷ ︸
v1,...,vk−1

, 1︸︷︷︸
vk

, 10ṽk , . . . , 10ṽK−1︸ ︷︷ ︸
vk+1,...,vK

)
(20)

as the one-to-one transformation of the search space into the set of feasible predictor

weights V = ∪Ki=1Vk.
With the proposed definition of the outer optimizer’s search space, the problem at

hand calls for a constrained global optimizer which is capable of managing simple box

constraints. Mullen (2014) presents a very detailed survey of continuous global optimizers

in R as well as a thorough empirical comparison of the corresponding implementations.

Our reference implementation, the R package MSCMT25, features a modular design

which allows to plug in many different optimizers for the outer optimization, the current

package version includes support for most of the optimizers mentioned in Mullen (2014)

as well as some further optimizers.

Below, the performance of 16 different outer optimizers will be compared. One of the

optimizers in this survey is a newly introduced implementation of (Gilli et al., 2011, Al-

24Of course, the sets Vk are not pairwise disjoint, but this does not raise trouble for the optimizer in
the particular subproblems.

25See Becker and Klößner (2017b).

17

gorithm 49), which we call DEoptC. Compared to the already available R-implementation

in function DEopt of R package NMOF, DEoptC combines a Differential Evolution algo-

rithm with the proposed parametrization of the search space, a stopping rule based on

lack of improvement for a given number of generations and memory pre-allocations for

the Fortran-calls to WNNLS in a pure C-implementation, resulting in a speed multiplier of

more than four.

3.6 An Algorithm for Solving Generalized SCM Tasks

Overall, the ingredients described in the previous subsections are put together to form

our algorithm for solving generalized SCM tasks, see Figure 1.

Input: matrices X̃, Z̃, lower bound lb, mapping V = V (v1, . . . , vK) = V (v)
Output: optimal v∗ = (v∗1, . . . , v

∗
K) and w∗ = (w∗1, . . . , w

∗
J)

1 J ← columns corresponding to sunny donors
2 if J is empty then

3 w∗← arg minw w
′Z̃ ′Z̃w s.t. X̃w = 0, w ≥ 0,1′w = 1

4 v∗ ← equal weights (or other arbitrary choice)

5 else
6 if J is a singleton then
7 set w∗ accordingly
8 v∗ ← equal weights (or other arbitrary choice)

9 else
10 if unrestricted outer optimum is feasible then

11 w∗← arg minw w
′Z̃ ′Z̃w s.t. w ≥ 0,1′w = 1

12 v∗ ← a particular v with w∗ = W ∗(v) = arg minw w
′X̃ ′V (v)X̃w

13 else

14 remove columns of X̃ and Z̃ not contained in J
15 v∗ ← arg minvW

∗(v)′Z̃ ′Z̃W ∗(v) s.t. lb ≤ vk ≤ 1, max vk = 1
16 w∗← W ∗(v∗)
17 re-impute 0’s to w∗ for components belonging to removed donors

Figure 2: Algorithm for Solving Generalized SCM Tasks

As a first step, the subset of donors that are sunny has to be determined using a

standard solver for linear programs26. If there are no sunny donors, i.e., if the inner opti-

mization can – independent of the predictor weights – be solved perfectly, the quadratic

program given by equation (10) has to be solved (preferably using the WNNLS algorithm)

26In our R package MSCMT, we use the R package lpSolve for solving linear programs, see Berkelaar
and others (2015).

18

to find optimal (with respect to the outer objective function) donor weights among those

with a perfect fit with respect to the inner optimization.

In a second step, the (rarely occuring) special case of only one sunny donor can be

sorted out, because there is obviously no need for an optimization in this case: all weight

will be put on the unique sunny donor, independent of the predictor weights v1, . . . , vK .

In the next step, the unrestricted outer optimum has to be calculated using equation

(13) (preferably using the WNNLS algorithm) and checked for feasibility using equation

(16) (and a standard solver for linear programs) in order to avoid solving the difficult and

typically time-consuming outer optimization task when indicated.

In case of a feasible unrestricted outer optimum, the algorithm terminates with the

unrestricted outer optimum, while in the remaining case the nested optimization task has

actually to be solved. To potentially improve numerical stability and reduce computa-

tional burden, the data belonging to shady donors can be removed first, because we know

from the theory developed above that shady donors will always obtain zero weights in

W ∗(v1, . . . , vK), regardless of the values the predictor weights take.

4 Reliability of SCM Implementations

In the following, we investigate the reliability of available implementations for synthetic

control methods. More precisely, we compare the results obtained with our implemen-

tation of the newly proposed algorithm, the R package MSCMT27 (R/MSCMT), with

other implementations of synthetic control methods, namely the R package Synth version

1.1-5 (R/Synth), Matlab version R2016b together with the Synth code from Jens Hain-

mueller’s webpage, and Stata (version 14) in combination with the corresponding Synth

package by Alberto Abadie, Alexis Diamond, and Jens Hainmueller (version 0.0.7)28.

A terse but similar comparison has already been provided by Becker and Klößner

(2017a), where R/MSCMT is shown to be the only implementation finding the correct

(optimal) solution.29 In the sequel, we will illustrate that the application in Becker and

Klößner (2017a) is not a sole exception, by replicating some of the estimations of Abadie

and Gardeazabal (2003) with the implementations mentioned above. More precisely,

our investigation will cover two applications: the ‘main’ application with the Basque

Country as treated unit, and the ‘placebo’ result for Catalonia (Cataluna) as treated

unit.30 Finally, we will compare the performance of different numerical optimizers when

27We use R version 3.3.2 and MSCMT version 1.2.0, see R Core Team (2016) and Becker and Klößner
(2017b).

28See Abadie et al. (2011) and http://web.stanford.edu/~jhain/synthpage.html.
29This application also provides a practical example where the unrestricted outer optimum is actually

feasible.
30Reproducible calculations of the results obtained with packages MSCMT and Synth are contained

in the web appendix. All analyses are based on the dataset basque and the data preparation described
on the help page for function synth, both provided by R package Synth.

19

http://web.stanford.edu/~jhain/synthpage.html

used for solving the outer optimization, separately for the Basque Country and Catalonia

as treated unit.

4.1 Synthetic Control Unit for the Basque Country

The compositions of the Basque Country’s synthetic control unit and the RMSPEs of the

dependent variable obtained with the aforementioned implementations are collected in

Table 2.

Matlab R/MSCMT R/Synth Stata

Baleares (Islas) 0.00000 21.92728 0.00000 0.00000
Cataluna 85.19074 63.27857 85.08140 90.51304
Madrid (Comunidad De) 14.80926 14.79414 14.91860 9.48685

RMSPE GDP per Capita 1960–69 0.09416 0.06547 0.09415 0.10484

Table 2: Results for the Basque Country. Weights of donor units in % and RMSPE of
GDP per Capita 1960–69. Donor units with (nearly) zero weights are omitted.

The results obtained with R/Synth31 coincide with the results reported in Abadie and

Gardeazabal (2003). Obviously, Matlab, R/Synth and Stata32 deliver suboptimal (and

thus wrong) results, as the RMSPE obtained with R/MSCMT33 is considerably smaller

than the RMSPEs obtained with the other implementations.

As Figure 3 shows, the synthetic control unit obtained with R/MSCMT differs con-

siderably from the other results not only with respect to the donor weights and the outer

objective function value, but also with respect to the predicted values for the real per

capita GDP. All in all, the differences between the values for the (true) Basque Country

and its synthetic control unit are considerably increased for the improved (in terms of the

objective function value) synthetic control unit obtained with R/MSCMT.

Table 3 summarizes the ‘optimal’ predictor weights found by the outer optimizer for

the different implementations.

31We performed the calculation with all four possible combinations of inner (ipop vs. LowRankQP)
and outer (default vs. genoud) optimizers and report only the best result, which is obtained by using
LowRankQP in combination with genoud.

32We use the most extensive optimization method by enabling options nested and allopt.
33All parameters were left at their defaults, the random seed has been set to 1.

20

●
●

● ● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

● ● ●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

4

6

8

10

1960 1970 1980 1990

Year

re
al

 p
er

 c
ap

ita
 G

D
P,

 1
98

6
U

S
D

 th
ou

sa
nd

Estimation
●● Matlab

R/MSCMT

R/Synth

Stata

Treated Unit: Basque Country

Figure 3: Comparison of the synthesized real per capita GDP for all synthetic control
units and the true real per capita GDP (thick line) for the Basque Country. The shaded
area depicts the optimization period.

Matlab R/MSCMT R/Synth Stata

school.illit 0.00978 0.00158 1.29933 6.06099
school.prim 2.78902 0.00158 0.38459 8.97528
school.med 9.87364 0.00158 14.88152 6.79965
school.higher 10.64217 0.02903 13.98743 1.41176
invest 0.05378 0.02990 0.36511 0.75721
gdpcap 10.52137 99.92528 1.87268 22.92560
sec.agriculture 8.07297 0.00158 10.33610 5.61804
sec.energy 8.66569 0.00158 7.84373 9.42606
sec.industry 8.96004 0.00158 11.18351 1.37489
sec.construction 2.43919 0.00158 5.91204 2.23459
sec.services.venta 8.57422 0.00158 0.42320 0.04532
sec.services.nonventa 4.96361 0.00158 9.21059 15.74805
popdens 24.43452 0.00158 22.30016 18.62256

Table 3: Results for the Basque Country. Optimal predictor weights in % (as reported
by software).

To illustrate that the main culprit of the suboptimal solutions obtained with Matlab,

R/Synth and Stata is the outer optimizer and, potentially, the parametrization of the

search space, we plug the optimal predictor weights reported by R/MSCMT as fixed pre-

dictor weights into the inner optimizers of Matlab, R/Synth (ipop as well as LowRankQP)

and Stata, bypassing the outer optimization. Table 4 reports the results of this experi-

ment: all alternative implementations now report considerably improved outer objective

function values (RMSPEs), clearly indicating that the outer optimizers originally failed to

21

find (near) optimal predictor weights. While the predictor losses for LowRankQP, Matlab

and Stata are (nearly) identical to the predictor loss obtained with R/MSCMT, ipop’s

result is clearly distinguishable from R/MSCMT’s result, indicating additional problems

with ipop as inner optimizer.34

ipop LowRankQP Matlab Stata WNNLS

Andalucia 0.02890 0.00000 0.00054 0.00000 0.00000
Aragon 0.05736 0.00000 0.00218 0.00000 0.00000
Principado De Asturias 0.07121 0.00000 0.00335 0.00000 0.00000
Baleares (Islas) 24.84337 21.96958 22.79723 21.93067 21.92728
Canarias 0.07195 0.00000 0.00230 0.00000 0.00000
Cantabria 0.51458 0.02273 0.39857 0.00182 0.00000
Castilla Y Leon 0.03800 0.00000 0.00094 0.00000 0.00000
Castilla-La Mancha 0.02198 0.00000 0.00037 0.00000 0.00000
Cataluna 57.56800 63.18231 61.41685 63.27086 63.27857
Comunidad Valenciana 0.06862 0.00000 0.00325 0.00000 0.00000
Extremadura 0.02594 0.00000 0.00032 0.00000 0.00000
Galicia 0.03258 0.00000 0.00067 0.00000 0.00000
Madrid (Comunidad De) 16.53677 14.82538 15.36867 14.79664 14.79414
Murcia (Region de) 0.03725 0.00000 0.00090 0.00000 0.00000
Navarra (Comunidad Foral De) 0.05410 0.00000 0.00259 0.00000 0.00000
Rioja (La) 0.02939 0.00000 0.00127 0.00000 0.00000

RMSPE GDP per Capita 1960–69 0.06615 0.06548 0.06566 0.06547 0.06547
Predictor loss (×10 000) 3.49127 3.37496 3.37939 3.37496 3.37496

Table 4: Results for the Basque Country obtained with fixed, optimal predictor weights
as reported by R/MSCMT. Weights of donor units in % and RMSPE of GDP per Capita
1960–69. Donor units with (nearly) zero weights are omitted.

The results of Table 4 confirm our conjecture that using a local outer optimizer with

only one or a few different starting values, a strategy incorporated by Matlab, R/Synth

(when using the default outer optimizer) and Stata, may be an inappropriate approach.

Since R/Synth in combination with genoud, a genetic global optimizer, also fails to

obtain a (near) optimal solution, the parametrization of the search space seems to have

considerable influence on the success of the outer optimization as well.

4.2 Synthetic Control Unit for Catalonia

The compositions of Catalonia’s synthetic control unit and the RMSPEs of the dependent

variable obtained with the different implementations of synthetic control methods are

collected in Table 5. Again, Matlab, R/Synth and Stata deliver suboptimal results, as

the RMSPE of R/MSCMT’s result is considerably lower.

34See the web appendix for more serious examples of ipop’s suboptimality.

22

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ● ●
● ●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

4

6

8

10

1960 1970 1980 1990

Year

re
al

 p
er

 c
ap

ita
 G

D
P,

 1
98

6
U

S
D

 th
ou

sa
nd

Estimation
●● Matlab

R/MSCMT

R/Synth

Stata

Treated Unit: Catalonia

Figure 4: Comparison of the synthesized real per capita GDP for all synthetic control units
and the true real per capita GDP (thick line) for Catalonia. The shaded area depicts the
optimization period.

Matlab R/MSCMT R/Synth Stata

Principado De Asturias 6.28543 0.00000 1.94288 21.46473
Baleares (Islas) 28.74754 23.24732 27.41967 25.62794
Cantabria 22.35530 0.00000 24.04876 7.31928
Madrid (Comunidad De) 42.61172 43.78377 44.27370 45.58805
Murcia (Region de) 0.00000 0.00000 2.31422 0.00000
Navarra (Comunidad Foral De) 0.00000 32.96891 0.00002 0.00000

RMSPE GDP per Capita 1960–69 0.01917 0.00897 0.01741 0.01719

Table 5: Results for Catalonia. Weights of donor units in % and RMSPE of GDP per
Capita 1960–69. Donor units with (nearly) zero weights are omitted.

Although neither the donor weights nor the outer objective function value are reported

in Abadie and Gardeazabal (2003), a comparison of our Figure 4 with Figure 4 of Abadie

and Gardeazabal (2003) indicates that the synthesized real per capita GDP values ob-

tained with Matlab and R/Synth35 essentially coincide with the results of Abadie and

Gardeazabal (2003), while R/MSCMT36 and Stata37 clearly produce distinctly different

compositions of the synthetic control unit as well as synthesized real per capita GDP

values.

35As above, we performed the calculation with all four possible combinations of inner (ipop vs.
LowRankQP) and outer (default vs. genoud) optimizers and report only the best result, which this time is
obtained by using ipop in combination with genoud.

36As above, all parameters were left at their defaults, the random seed has been set to 1.
37As above, we use the most extensive optimization method by enabling options nested and allopt.

23

●● ●●● ●● ●●●●●●●

● ●●●●●●

●●●●●●

●

● ●●●●●●●

● ●●●●●●●●●●

●●●●

●●●●

● ●●

●● ●●

●●●

● ●

●● ●● ●

●●● ●

●●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●● ●● ●● ●● ●●● ●●●●●●● ●●●● ●●●●● ●● ●●●●● ●●●●●●● ●● ●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●● ● ●●● ●● ●● ●●●●●● ●●● ●●● ●● ●●●●●● ●● ●●●●●●●●●

●●●●●●●●●●●●●●●

Time RMSPE

10 15 20 25 30 35 0.06 0.07 0.08 0.09 0.10

soma

psoptim

PSopt

optim

nlminb

malschains

isres

hydroPSO

GenSA

genoud

ga

DEoptim

DEoptC

DEopt

crs

cmaes

Treated Unit: Basque Country

Figure 5: Comparison of box plots for time (in seconds) and RMSPE (outer objective
function value) for various optimizers (based on 250 random seeds) with Basque country
as treated unit.

4.3 Comparison of Outer Optimizers

To illustrate that calculating synthetic controls potentially is a very demanding task for

the outer optimizer, we compare the results of 16 different optimizers. Apart from 13

optimizers surveyed in Mullen (2014),38 we include DEoptC (introduced in Subsection 3.5

above) and two deterministic box-constrained local optimizers, nlminb and optim (with

method "L-BFGS-B") from R package stats. The latter two are made stochastic and

tuned for global optimization tasks by incorporating repeated optimizations with a given

number of randomly generated starting values.

To compare the performance ot the optimizers, we repeated the calculation of the

Basque country’s synthetic control unit 250 times, varying the initial seed of the random

number generator(s) from 1 to 250. To establish a fair comparison between the optimizers,

we tried hard to adjust the mean time spent for single calculations to about 20 seconds39,

while maintaining sensible and comparable parameter settings.

The results for Basque country are depicted in Figure 5. Obviously, most outer opti-

mizers found a (near) optimal solution in the vast majority of runs. optim was successful

at least in the majority of runs, while soma mostly and cmaes nearly always failed. But

notice that not a single result is worse than the solutions obtained with Matlab, R/Synth,

38Some optimizers from Mullen (2014) were excluded because they are not suited well for the particular
class of optimization problems involved with SCM.

39We used a single core of an Intel R© i7 860@2.80GHz. We failed to find appropriate settings to adjust
the time for cmaes to about 20 seconds. The non-default parameters for the various optimizers are listed
in the web appendix.

24

●●● ●●●● ●●●●●●

●● ●●

● ●● ●●

● ●

●●●

●● ●●●●

●● ● ●●● ●●●

● ●● ●●

●

● ●●

●●●● ● ●●●

●●●●

●● ●●●● ●

●● ●●●

● ●● ●● ●●

● ●

● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●●●● ● ●● ●●● ● ●● ●● ●● ●●●● ●●

●● ●●●●●●●●● ●●●● ●● ●●●●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●●●●● ●●●● ●●●

●● ●●● ●●● ●●

●●● ●●●

●●● ● ●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●●●

● ●●● ●●● ●●●●

●● ● ●●● ●●● ●●● ●● ●●●●●● ●●●● ●●●● ● ●●● ●● ●●● ● ● ●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●● ●● ● ●●●●●● ●●●● ●●● ● ●●●● ● ●●● ●●●●●● ●●● ● ●●●●● ●●●

●● ●●● ●●●● ●●● ● ●● ●●●● ●●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●

● ●●●●● ●

● ● ●●●●●● ●● ●● ●● ●●●●● ●●●●● ●●●● ●● ●●●●●●●● ●●●●● ●●●●

● ● ●● ● ●●●● ●●●

● ●● ●

Time RMSPE

15.0 17.5 20.0 22.5 25.0 0.010 0.012 0.014 0.016 0.018

soma

psoptim

PSopt

optim

nlminb

malschains

isres

hydroPSO

GenSA

genoud

ga

DEoptim

DEoptC

DEopt

crs

cmaes

Treated Unit: Catalonia

Figure 6: Comparison of box plots for time (in seconds) and RMSPE (outer objective
function value) for various optimizers (based on 250 random seeds) with Catalonia as
treated unit.

or Stata, which have RMSPEs of at least 0.09415.

Repeating the analysis for the calculation of Catalonia’s synthetic control unit reveals

the difficulties which may arise in the outer optimization, see Figure 6. Here, many

optimizers often fail to obtain a (near) optimal solution. In fact, one has to be lucky to

find a (near) optimal solution in the first attempt, and it certainly is advisable to repeat

the calculation many times (with different seeds) and/or using various outer optimizers.

As above, all results obtained in this study are at least as good as the results obtained

with R/Synth, Matlab, or Stata, the only exception being some outliers for cmaes. Our

implementation DEoptC features a good overall performance and has a very small worst-

case loss.

5 Conclusion

In this paper, we contribute to the literature on synthetic control methods by developing

helpful results on the theory of the optimization problems underlying synthetic control

methods. In particular, we provide a unifying framework for general SCM tasks which

incorporates both the ’standard’ SCM approach of Abadie and Gardeazabal (2003) and the

MSCMT approach of Klößner and Pfeifer (2015). Furthermore, we show that predictor

weights must be bounded away from zero in order to obtain a mathematically sound

optimization problem with an objective function that is continuous on its compact domain

of definition.

25

As existing implementations of SCM have recently be shown to be rather unreliable,

we develop an algorithm for solving such general SCM tasks. During its first stages,

this algorithm checks for several special cases, thereby improving speed and accuracy

of calculations in those cases. For instance, if a perfect fit is possible with respect to

the economic predictors, only a nonnegatively constrained linear least squares problem

with linear equality constraints has to be solved to optimize the fit with respect to the

outcome, which can be done fast and numerically stable by using the WNNLS algorithm.

Additionally, if the unrestricted outer optimum is feasible, i.e., if predictor weights can

be found for which the donor weights that optimize the fit with respect to the outcome

constitute the solution to the inner optimization problem, then there is no need to solve a

nested optimization problem: in this case, optimal donor weights are given by the feasible

unrestricted outer optimum and can be computed fast and numerically stable by using

the WNNLS algorithm, again.

We also elaborate on cleverly searching for synthetic controls when iterative optimiz-

ers have to be used for calculations, with special emphasis on reliability of results and

computation speed. On the one hand, by removing so-called ’shady’ donors, speed of com-

putation and numerical accuracy may be fostered. On the other hand, using WNNLS for

solving the inner optimization improves significantly upon existing implementations with

respect to accuracy, and even more so with respect to speed of computation. Considering

the outer optimization task, one should avoid opting for local optimizers that use only

one or a few starting values, as such implementations of SCM often fail to find the correct

solution. A comparison of various numerical optimizers one may use for solving the outer

optimization shows that stochastic, heuristic methods are much more successful in finding

the correct solution. However, as some instances of SCM calculations are very demanding

for the outer optimization task, it is advisable to rerun calculations using different initial

seeds of the random number generator and/or different heuristic optimizers to increase

the probability of finding the correct optimum.

With the R package MSCMT, we provide an open source implementation of our new

algorithm for calculating synthetic control units for a free open source software application.

With its modular design, MSCMT features interfaces to various optimizers, including

WNNLS for the inner optimization task and many different heuristic methods such as simu-

lated annealing, genetic algorithms, differential evolution, and particle swarm optimizers

for the outer optimization. All methods described in this paper are thus immediately

applicable by applied researchers.

26

References

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller, “Synthetic Control
Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco
Control Program,” Journal of the American Statistical Association, 2010, 105 (490),
493–505.

, , and , “Synth: An R Package for Synthetic Control Methods in Comparative
Case Studies,” Journal of Statistical Software, 6 2011, 42 (13), 1–17.

, , and , “Comparative Politics and the Synthetic Control Method,” American
Journal of Political Science, 2015, 59 (2), 495–510.

and Javier Gardeazabal, “The Economic Costs of Conflict: A Case Study of the
Basque Country,” The American Economic Review, 2003, 93 (1), 113–132.

Acemoglu, Daron, Simon Johnson, Amir Kermani, James Kwak, and Todd
Mitton, “The value of connections in turbulent times: Evidence from the United
States,” Journal of Financial Economics, 2016, 121 (2), 368 – 391.

Becker, Martin and Stefan Klößner, “Estimating the Economic Costs of Organized
Crime By Synthetic Control Methods,” 2017. Working Paper.

and , MSCMT: Multivariate Synthetic Control Method Using Time Series 2017. R
package version 1.2.0.

Berkelaar, Michel and others, lpSolve: Interface to ’Lp solve’ v. 5.5 to Solve Lin-
ear/Integer Programs 2015. R package version 5.6.13.

Cavallo, Eduardo, Sebastian Galiani, Ilan Noy, and Juan Pantano, “Catastrophic
Natural Disasters and Economic Growth,” The Review of Economics and Statistics,
2013, 95 (5), 1549–1561.

Gardeazabal, Javier and Ainhoa Vega-Bayo, “An Empirical Comparison Between
the Synthetic Control Method and Hsiao et al.’s Panel Data Approach to Program
Evaluation,” Journal of Applied Econometrics, 2016, pp. n/a–n/a.

Gilli, Manfred, Dietmar Maringer, and Enrico Schumann, Numerical Methods
and Optimization in Finance, Waltham, MA, USA: Academic Press, 2011. ISBN
0123756626.

Gobillon, Laurent and Thierry Magnac, “Regional Policy Evaluation: Interactive
Fixed Effects and Synthetic Controls,” The Review of Economics and Statistics, 2016,
98 (3), 535–551.

Hanson, Richard J. and Karen H. Haskell, “Algorithm 587: Two Algorithms for the
Linearly Constrained Least Squares Problem,” ACM Trans. Math. Softw., September
1982, 8 (3), 323–333.

Haskell, Karen H. and Richard J. Hanson, “An algorithm for linear least squares
problems with equality and nonnegativity constraints,” Mathematical Programming,
1981, 21 (1), 98–118.

27

Hsiao, Cheng, H. Steve Ching, and Shui Ki Wan, “A Panel Data Approach for
Program Evaluation: Measuring the Benefits of Political and Economic Integration of
Hong Kong with Mainland China,” Journal of Applied Econometrics, 2012, 27 (5),
705–740.

Jinjarak, Yothin, Ilan Noy, and Huanhuan Zheng, “Capital Controls in Brazil–
Stemming a Tide with a Signal?,” Journal of Banking and Finance, 2013, 37 (8),
2938–2952.

Karatzoglou, Alexandros, Alex Smola, Kurt Hornik, and Achim Zeileis, “kern-
lab – An S4 Package for Kernel Methods in R,” Journal of Statistical Software, 2004,
11 (9), 1–20.

Kaul, Ashok, Stefan Klößner, Gregor Pfeifer, and Manuel Schieler, “Synthetic
Control Methods: Never Use All Pre-Intervention Outcomes as Economic Predictors,”
October 2016. Working Paper.

Kleven, Henrik Jacobsen, Camille Landais, and Emmanuel Saez, “Taxation and
International Migration of Superstars: Evidence from the European Football Market,”
The American Economic Review, 2013, 103 (5), 1892–1924.

Klößner, Stefan and Gregor Pfeifer, “Synthesizing Cash for Clunkers: Stabilizing
the Car Market, Hurting the Environment,” Annual Conference 2015 (Muenster): Eco-
nomic Development - Theory and Policy, Verein für Socialpolitik / German Economic
Association 2015.

Mullen, Katharine, “Continuous Global Optimization in R,” Journal of Statistical Soft-
ware, 2014, 60 (1), 1–45.

Ormerod, John T. and M. P. Wand, LowRankQP: Low Rank Quadratic Programming
2014. R package version 1.0.2.

Pinotti, Paolo, “The Economic Costs of Organised Crime: Evidence from Southern
Italy,” The Economic Journal, 2015, 125 (586), F203–F232.

R Core Team, R: A Language and Environment for Statistical Computing R Foundation
for Statistical Computing 2016.

Soetaert, K., K. van den Meersche, and D. van Oevelen, limSolve: Solving Linear
Inverse Models 2009. R package version 1.5.1.

Wolfe, Philip, “The Simplex Method for Quadratic Programming,” Econometrica, 1959,
27 (3), 382–398.

28

	Introduction
	The Synthetic Control Method
	'Standard' SCM
	Generalizations of SCM
	General SCM Problem Formulation

	Solving Generalized SCM Problems
	Dimension Reduction and Special Cases
	The Domain of the Outer Optimization
	Feasibility of the Unrestricted Outer Optimum and Finding Predictor Weights
	The Choice of the Inner Optimizer
	Details on the Outer Optimization
	An Algorithm for Solving Generalized SCM Tasks

	Reliability of SCM Implementations
	Synthetic Control Unit for the Basque Country
	Synthetic Control Unit for Catalonia
	Comparison of Outer Optimizers

	Conclusion
	References

