Zusammenfassung: Gauß-Test für den Mittelwert

bei bekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}$ unbekannt, σ^2 bekannt approximativ: $E(Y) = \mu \in \mathbb{R}$ unbekannt, $\operatorname{Var}(Y) = \sigma^2$ bekannt X_1, \dots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: \mu = \mu_0 \qquad H_0: \mu \le \mu_0 \qquad H_0: \mu \ge \mu_0 H_1: \mu \ne \mu_0 \qquad H_1: \mu > \mu_0 \qquad H_1: \mu < \mu_0$		
Teststatistik	$N = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$		
Verteilung (H ₀)	N für $\mu=\mu_0$ (näherungsweise) $N(0,1)$ -verteilt		
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}}) \qquad (N_{1-\alpha}, \infty) \qquad (-\infty, -N_{1-\alpha}) $ $\cup (N_{1-\frac{\alpha}{2}}, \infty)$		
<i>p</i> -Wert	$2 \cdot (1 - \Phi(N))$	$1 - \Phi(N)$	Φ(N)

ichließende Statistik Folie 133

t-Test für den Mittelwert 7.3

Zusammenfassung: t-Test für den Mittelwert

bei unbekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{++}$ unbekannt approximativ: $E(Y) = \mu \in \mathbb{R}, \text{Var}(Y) = \sigma^2 \in \mathbb{R}_{++}$ unbekannt X_1, \dots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: \mu = \mu_0 \ H_1: \mu \neq \mu_0 \ H_1: \mu \neq \mu_0 \ H_1: \mu \neq \mu_0$ $H_1: \mu \neq \mu_0$ $H_2: \mu \leq \mu_0 \ H_3: \mu \leq \mu_0$		
Teststatistik	$t = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$		
Verteilung (H ₀)	t für $\mu=\mu_0$ (nä	herungsweise) $t(n-1)$	– 1)-verteilt
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
	$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \overline{X}^2 \right)}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n-1;1-\frac{\alpha}{2}}) \\ \cup (t_{n-1;1-\frac{\alpha}{2}}, \infty)$	$(t_{n-1;1-lpha},\infty)$	$(-\infty, -t_{n-1;1-\alpha})$
<i>p</i> -Wert	$2 \cdot (1 - F_{t(n-1)}(t))$	$1 - \mathcal{F}_{t(n-1)}(t)$	$F_{t(n-1)}(t)$
ließende Statistik Folie			

7 Tests für Mittelwert und Varianz Chi-Quadrat-Test für die Varianz 7.4

Zusammenfassung: χ^2 -Test für die Varianz

einer normalverteilten Zufallsvariablen mit unbekanntem Erwartungswert

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$ unbekannt, $\sigma^2 \in \mathbb{R}_{++}$ unbekannt X_1, \ldots, X_n einfache Stichprobe zu Y			
Nullhypothese Gegenhypothese	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$H_0: \sigma^2 \le \sigma_0^2 \ H_1: \sigma^2 > \sigma_0^2$	$H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	
Teststatistik	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$			
Verteilung (H ₀)	χ^2 (für σ^2	$=\sigma_0^2)$ $\chi^2(n-1)$ -v	erteilt	
Benötigte Größen	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right)$			
	$\operatorname{mit} \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$			
Kritischer Bereich	$[0,\chi^2_{n-1;\frac{\alpha}{2}})$ $(\chi^2_{n-1;1-\alpha},\infty)$ $[0,\chi^2_{n-1;\alpha})$			
zum Niveau $lpha$	$\cup(\chi^2_{n-1;1-\frac{\alpha}{2}},\infty)$			
<i>p</i> -Wert	$ 2 \cdot \min \left\{ F_{\chi^2(n-1)}(\chi^2), \\ 1 - F_{\chi^2(n-1)}(\chi^2) \right\} $	$1 - F_{\chi^2(n-1)}(\chi^2)$	$F_{\chi^2(n-1)}(\chi^2)$	

Schließende Statistik Folie 151

8 Anpassungs- und Unabhängigkeitstests Chi-Quadrat-Anpassungstest 8.1

Zusammenfassung: Chi-Quadrat-Anpassungstest

zur Anpassung an parametrische Verteilungsfamilie

Anwendungs- voraussetzungen	approx.: Y beliebig verteilt, X_1,\ldots,X_n einf. Stichprobe zu Y Familie von Verteilungsfunktionen F_{θ} für $\theta \in \Theta$ vorgegeben $k-1$ Klassengrenzen $a_1 < a_2 < \ldots < a_{k-1}$ vorgegeben
Nullhypothese Gegenhypothese	$H_0: F_Y = F_{\theta}$ für ein $\theta \in \Theta$ $H_1: F_Y \neq F_{\theta}$ (für alle $\theta \in \Theta$)
Teststatistik	$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i^0)^2}{np_i^0} = n \sum_{i=1}^k \frac{\binom{n_i}{n} - p_i^0}{p_i^0} = \left(\frac{1}{n} \sum_{i=1}^k \frac{n_i^2}{p_i^0}\right) - n$
Verteilung (H ₀)	χ^2 ist unter H_0 näherungsweise $\chi^2(k-r-1)$ -verteilt,
	wenn $\widehat{\theta}$ ML-Schätzer des r -dim. Verteilungsparameters θ auf
	Basis klassierter Daten ist (Verwendung von $\widehat{\theta}$ siehe unten). (Näherung nur vernünftig, falls $np_i^0 \geq 5$ für $i \in \{1, \dots, k\}$)
Benötigte Größen	$\begin{aligned} p_i^0 &= F_{\hat{\theta}}(a_k) - F_{\hat{\theta}}(a_{k-1}) \text{ mit } a_0 := -\infty, a_k := \infty, \\ n_i &= \#\{j \in \{1, \dots, n\} \mid x_j \in (a_{i-1}, a_i]\}, i \in \{1, \dots, k\} \end{aligned}$
Kritischer Bereich zum Niveau α	$(\chi^2_{k-r-1;1-\alpha},\infty)$
<i>p</i> -Wert	$1 - F_{\chi^2(k-r-1)}(\chi^2)$

Tests für Mittelwert und Varianz Gauß-Test für Anteilswert p 7

Zusammenfassung: (Approx.) Gauß-Test für Anteilswert p

Anwendungs- voraussetzungen	approximativ: $Y \sim B(1,p)$ mit $p \in [0,1]$ unbekannt X_1,\ldots,X_n einfache Stichprobe zu Y			
Nullhypothese Gegenhypothese	$H_0: p = p_0$ $H_0: p \le p_0$ $H_0: p \ge p_0$ $H_1: p \ne p_0$ $H_1: p < p_0$			
Teststatistik	$N = \frac{\widehat{p} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} \sqrt{n}$			
Verteilung (H_0)	N für $p=p_0$ näh	N für $p=p_0$ näherungsweise $N(0,1)$ -verteilt		
Benötigte Größen	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$			
Kritischer Bereich	$(-\infty, -N_{1-\frac{\alpha}{2}})$ $(N_{1-\alpha}, \infty)$ $(-\infty, -N_{1-\alpha})$			
zum Niveau α	$\cup (\tilde{N_{1-\frac{\alpha}{2}}}, \infty)$			
<i>p</i> -Wert	$2 \cdot (1 - \Phi(N))$	$1-\Phi(N)$	Φ(N)	

Schließende Statistik Folie 135

Tests für Mittelwert und Varianz

Chi-Quadrat-Test für die Varianz 7.4

Zusammenfassung: χ^2 -Test für die Varianz

einer normalverteilten Zufallsvariablen mit bekanntem Erwartungswert

Anwendungs- voraussetzungen	exakt: $Y\sim N(\mu,\sigma^2),\ \mu\in\mathbb{R}$ bekannt, $\sigma^2\in\mathbb{R}_{++}$ unbekannt X_1,\ldots,X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$ \begin{array}{c cccc} H_0: \sigma^2 = \sigma_0^2 & H_0: \sigma^2 \leq \sigma_0^2 & H_0: \sigma^2 \geq \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 & H_1: \sigma^2 > \sigma_0^2 & H_1: \sigma^2 < \sigma_0^2 \\ \end{array} $		
Teststatistik	$\chi^2 = \frac{n \cdot \widetilde{S}^2}{\sigma_0^2}$		
Verteilung (H ₀)	χ^2 (für $\sigma^2=\sigma_0^2$) $\chi^2(n)$ -verteilt		
Benötigte Größen	$\widetilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$		
Kritischer Bereich zum Niveau α	$ \begin{array}{c c} [0,\chi^2_{n;\frac{\alpha}{2}}) & (\chi^2_{n;1-\alpha},\infty) & [0,\chi^2_{n;\alpha}) \\ \cup (\chi^2_{n;1-\frac{\alpha}{2}},\infty) & \end{array} $		
<i>p</i> -Wert	$ 2 \cdot \min \left\{ F_{\chi^{2}(n)}(\chi^{2}), \\ 1 - F_{\chi^{2}(n)}(\chi^{2}) \right\} $	$1 - F_{\chi^2(n)}(\chi^2)$	$F_{\chi^2(n)}(\chi^2)$

Schließende Statistik Folie 148

Zusammenfassung: Chi-Quadrat-Anpassungstest

zur Anpassung an eine vorgegebene Verteilung

Anwendungs- voraussetzungen	approximativ: Y beliebig verteilt X_1,\ldots,X_n einfache Stichprobe zu Y $k-1$ Klassengrenzen $a_1< a_2<\ldots< a_{k-1}$ vorgegeben
Nullhypothese Gegenhypothese	$H_0: F_Y = F_0$ $H_1: F_Y \neq F_0$
Teststatistik	$\chi^{2} = \sum_{i=1}^{k} \frac{\left(n_{i} - np_{i}^{0}\right)^{2}}{np_{i}^{0}} = n\sum_{i=1}^{k} \frac{\left(\frac{n_{i}}{n} - p_{i}^{0}\right)^{2}}{p_{i}^{0}} = \left(\frac{1}{n}\sum_{i=1}^{k} \frac{n_{i}^{2}}{p_{i}^{0}}\right) - n$
Verteilung (H ₀)	χ^2 ist näherungsweise $\chi^2(k-1)$ -verteilt, falls $F_Y=F_0$ (Näherung nur vernünftig, falls $np_i^0\geq 5$ für $i\in\{1,\ldots,k\}$)
Benötigte Größen	$\begin{aligned} \rho_i^0 &= F_0(a_i) - F_0(a_{i-1}) \text{ mit } a_0 := -\infty, a_k := \infty, \\ n_i &= \#\{j \in \{1, \dots, n\} \mid x_j \in (a_{i-1}, a_i]\}, i \in \{1, \dots, k\} \end{aligned}$
Kritischer Bereich zum Niveau α	$(\chi^2_{k-1;1-lpha},\infty)$
<i>p</i> -Wert	$1 - F_{\chi^2(k-1)}(\chi^2)$

Schließende Statistik Folie 158

8 Anpassungs- und Unabhängigkeitstests Chi-Quadrat-Unabhängigkeitstest 8.2

Zusammenfassung: Chi-Quadrat-Unabhängigkeitstest

Anwendungs- voraussetzungen	approximativ: (Y^A, Y^B) beliebig verteilt $(X_1^A, X_1^B), \ldots, (X_n^A, X_n^B)$ einfache Stichprobe zu (Y^A, Y^B) Ausprägungen $\{a_1, \ldots, a_k\}$ von $Y^A, \{b_1, \ldots, b_l\}$ von Y^B oder Klassengrenzen $a_1 < \ldots < a_{k-1}$ zu $Y^A, b_1 < \ldots < b_{l-1}$ zu Y^B
Nullhypothese Gegenhypothese	$H_0: Y^A, Y^B$ stochastisch unabhängig $H_1: Y^A, Y^B$ nicht stochastisch unabhängig
Teststatistik	$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - \widetilde{n}_{ij})^2}{\widetilde{n}_{ij}} = \left(\sum_{i=1}^k \sum_{j=1}^l \frac{n_{ij}^2}{\widetilde{n}_{ij}}\right) - n$
Verteilung (H ₀)	χ^2 ist näherungsweise $\chi^2((k-1)\cdot(i-1))$ -verteilt, falls H_0 gilt (Näherung nur vernünftig, falls $\widetilde{n}_{ij}\geq 5$ für alle $i,j)$
Benötigte Größen	$\begin{array}{l} n_{ij} = \#\{m \in \{1,\ldots,n\} \mid (x_m,y_m) \in A_i \times B_j\} \text{ für alle } i,j \text{ mit} \\ A_i = \{a_i\}, \ B_j = \{b_j\} \text{ bzw. Klassen } A_i, \ B_j \text{ nach vorg. Grenzen,} \\ \widetilde{n}_{ij} = \frac{n_i \cdot n_j}{m} \text{ mit } n_{i\cdot} = \sum_{j=1}^{J} n_{ij}, \ n_j = \sum_{i=1}^{k} n_{ij}, \end{array}$
Kritischer Bereich zum Niveau α	$(\chi^2_{(k-1)\cdot (l-1);1-\alpha},\infty)$
<i>p</i> -Wert	$1 - F_{\chi^2((k-1)\cdot(l-1))}(\chi^2)$

chließende Statistik Folie 178

Zusammenfassung: t-Differenzentest

Anwendungs- voraussetzungen	exakt: (Y^A, Y^B) gemeinsam (zweidimensional) normalverteilt, $E(Y^A) = \mu_A, E(Y^B) = \mu_B$ sowie Varianzen/Kovarianz unbekannt approx.: $E(Y^A) = \mu_A, E(Y^B) = \mu_B, Var(Y^A), Var(Y^B)$ unbek. $(X_1^A, X_1^B), \dots, (X_n^A, X_n^B)$ einfache Stichprobe zu (Y^A, Y^B)			
Nullhypothese Gegenhypothese	$H_0: \mu_A = \mu_B$ $H_0: \mu_A \le \mu_B$ $H_0: \mu_A \ge \mu_B$ $H_1: \mu_A \ne \mu_B$ $H_1: \mu_A \ne \mu_B$ $H_1: \mu_A \ne \mu_B$			
Teststatistik	$t = \frac{\overline{X}}{S} \sqrt{n}$			
Verteilung (H_0)	t für $\mu_A=\mu_B$ (näherungsweise) $t(n-1)$ -verteilt			
Benötigte Größen	$X_{i} = X_{i}^{A} - X_{i}^{B} \text{ für } i \in \{1, \dots, n\}, \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}\right)}$			
Kritischer Bereich zum Niveau α	$ \begin{array}{c c} (-\infty,-t_{n-1;1-\frac{\alpha}{2}}) & (t_{n-1;1-\alpha},\infty) & (-\infty,-t_{n-1;1-\alpha}) \\ \cup (t_{n-1;1-\frac{\alpha}{2}},\infty) & \end{array} $			
<i>p</i> -Wert	$2 \cdot (1 - F_{t(n-1)}(t))$	$1-F_{t(n-1)}(t)$	$F_{t(n-1)}(t)$	

ergleiche bei zwei unabhängigen Stichproben 9.2

Folie 184

Zusammenfassung: 2-Stichproben-t-Test für Anteilswerte

approx.: $Y^A \sim B(1, p_A), Y^B \sim B(1, p_B), p_A, p_B$ unbekannt

Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, $Y^B \sim N(\mu_B, \sigma_B^2)$, σ_A^2 , σ_B^2 bekannt $X_1^A, \ldots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \ldots, X_{n_B}^B$ zu Y^B .		
Nullhypothese Gegenhypothese	$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$	$H_0: \mu_A \leq \mu_B$ $H_1: \mu_A > \mu_B$	$H_0: \mu_A \ge \mu$ $H_1: \mu_A < \mu$
Teststatistik	$N = \frac{\overline{X^A} - \overline{X^B}}{\sqrt{\frac{\sigma_A^2}{\sigma_A} + \frac{\sigma_B^2}{\sigma_B^2}}}$		
Verteilung (H_0)	N für $\mu_A = \mu_B N(0,1)$ -verteilt		
Benötigte Größen	$\overline{X^A} = \frac{1}{n_A} \sum_{i=1}^{n_A} X_i^A, \overline{X}$	$\overline{B} = \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B$	
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}}) \\ \cup (N_{1-\frac{\alpha}{2}}, \infty)$	(N_{1-lpha},∞)	$(-\infty, -N_{1-})$
<i>p</i> -Wert	$2 \cdot (1 - \Phi(N))$	$1 - \Phi(N)$	Φ(<i>N</i>)

Zusammenfassung: 2-Stichproben-Gauß-Test

Zusammenfassung: 2-Stichproben-t-Test

bei unbekannten, aber übereinstimmenden Varianzen

Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, $Y^B \sim N(\mu_B, \sigma_B^2)$, μ_A , μ_B , $\sigma_A^2 = \sigma_B^2$ unbek. approx.: $E(Y^A) = \mu_A$, $E(Y^B) = \mu_B$, $Var(Y^A) = Var(Y^B)$ unbekannt $X_1^A, \dots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \dots, X_{n_B}^A$ zu Y^B .				
Nullhypothese Gegenhypothese	$H_1: \mu_A \neq \mu_B$		$H_0: \mu_A \ge \mu_B$ $H_1: \mu_A < \mu_B$		
Teststatistik	$t = \frac{\overline{X^A} - \overline{X^B}}{\sqrt{\frac{S^2}{n_1} + \frac{S^2}{n_2}}} = \frac{\overline{X^A} - \overline{X^B}}{S} \sqrt{\frac{n_A \cdot n_B}{n_A + n_B}}$				
Verteilung (H_0)	t für $\mu_A=\mu_B^{\gamma}$ (näherungsweise) $t(n_A+n_B-2)$ -verteilt				
Benötigte Größen	$\overline{X^A} = \frac{1}{n_A} \sum_{i=1}^{n_A} X_i^A, \overline{X^B} = \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B,$				
	$S = \sqrt{\frac{(n_A - 1)S_{YA}^2 + (n_B - 1)S_{YB}^2}{n_A + n_B - 2}} = \sqrt{\frac{\sum_{i=1}^{n_A} (X_i^A - \overline{X^A})^2 + \sum_{i=1}^{n_B} (X_i^B - \overline{X^B})^2}{n_A + n_B - 2}}$				
Kritischer Bereich	$(-\infty, -t_{n_A+n_B-2;1-\frac{\alpha}{2}})$ $(t_{n_A+n_B-2;1-\alpha}, \infty)$ $(-\infty, -t_{n_A+n_B-2;1-\alpha})$				
zum Niveau α	$\cup (t_{n_A+n_B-2;1-\frac{\alpha}{2}},\infty)$				
<i>p</i> -Wert	$2 \cdot (1 - F_{t(n_A + n_B - 2)}(t))$	$1 - F_{t(n_A + n_B - 2)}(t)$	$F_{t(n_A+n_B-2)}(t)$		

Zusammenfassung: F-Test zum Vergleich der Varianzen

zweier normalverteilte	zweier normalverteilter Zufallsvariablen			
Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, $Y^B \sim N(\mu_B, \sigma_B^2)$, $\mu_A, \mu_B, \sigma_A^2, \sigma_B^2$ unbek. $X_1^A, \dots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \dots, X_{n_B}^B$ zu Y^B .			
Nullhypothese Gegenhypothese	$\begin{array}{c c} H_0: \sigma_A^2 = \sigma_B^2 & H_0: \sigma_A^2 \leq \sigma_B^2 & H_0: \sigma_A^2 \geq \sigma_B^2 \\ H_1: \sigma_A^2 \neq \sigma_B^2 & H_1: \sigma_A^2 > \sigma_B^2 & H_1: \sigma_A^2 < \sigma_B^2 \end{array}$			
Teststatistik	$F = rac{S_{Y^A}^2}{S_{V^B}^2}$			
Verteilung (H ₀)	F unter H_0 für $\sigma_A^2=\sigma_B^2$ $F(n_A-1,n_B-1)$ -verteilt			
Benötigte Größen	$\overline{X^A} = \frac{1}{n_A} \sum_{i=1}^{n_A} X_i^A, \overline{X^B} = \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B,$			
	$S_{YA}^2 = \frac{1}{n_A - 1} \sum_{i=1}^{n_A} (X_i^A - \overline{X^A})^2 = \frac{1}{n_A - 1} \left(\left(\sum_{i=1}^{n_A} (X_i^A)^2 \right) - n_A \overline{X^A}^2 \right)$			
	$S_{YB}^2 = \frac{1}{n_B - 1} \sum_{i=1}^{n_B} (X_i^B - \overline{X^B})^2 = \frac{1}{n_B - 1} \left(\left(\sum_{i=1}^{n_B} (X_i^B)^2 \right) - n_B \overline{X^B}^2 \right)$			
Kritischer Bereich	$[0, F_{n_A-1, n_B-1; \frac{\alpha}{2}})$ $(F_{n_A-1, n_B-1; 1-\alpha}, \infty)$ $[0, F_{n_A-1, n_B-1; \alpha})$			
zum Niveau α	$\cup (F_{n_A-1,n_B-1;1-\frac{\alpha}{2}},\infty)$			
<i>p</i> -Wert	$2 \cdot \min \left\{ F_{F(n_A-1,n_B-1)}(F), \right.$	$1-F_{F(n_A-1,n_B-1)}(F)$	$F_{F(n_A-1,n_B-1)}(F)$	
	$1 - F_{F(n_A-1,n_B-1)}(F)$			

Konfidenzintervalle und Tests 10.4

Zusammenfassung: t-Test für den Parameter β_1

im einfachen linearen Regressionsmodell mit Normalverteilungsannahme

Anwendungs- voraussetzungen	exakt: $y_i = \beta_1 + \beta_2 \cdot x_i + u_i$ mit $u_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ für $i \in \{1, \dots, n\}$, σ^2 unbekannt, x_1, \dots, x_n deterministisch und bekannt, Realisation y_1, \dots, y_n beobachtet		
Nullhypothese	$H_0: \beta_1 = \beta_1^0$	$H_0: \beta_1 \leq \beta_1^0$	$H_0: \beta_1 \ge \beta_1^0$
Gegenhypothese	$H_1: \beta_1 \neq \beta_1^0$	$H_1: \beta_1 > \beta_1^0$	$H_1: \beta_1 < \beta_1^0$
Teststatistik	$t=rac{\widehat{eta}_1-eta_1^0}{\widehat{\sigma}_{eta_1}}$		
Verteilung (H_0)	t für $eta_1=eta_1^0$ $t(n-2)$ -verteilt		
Benötigte Größen	$\widehat{\beta}_2 = \frac{s_{X,Y}}{s_{X}^2}, \widehat{\beta}_1 = \overline{y} - \widehat{\beta}_2 \cdot \overline{x}, \widehat{\sigma}_{\widehat{\beta}_1} = \sqrt{\frac{\left(s_{Y}^2 - \widehat{\beta}_2 \cdot s_{X,Y}\right) \cdot \overline{x^2}}{\left(n-2\right) \cdot s_{X}^2}}$		
Kritischer Bereich	$(-\infty, -t_{n-2;1-\frac{\alpha}{2}})$	$(t_{n-2;1-lpha},\infty)$	$(-\infty, -t_{n-2;1-\alpha})$
zum Niveau $lpha$	$\cup (t_{n-2;1-\frac{\alpha}{2}},\infty)$		
p-Wert	$2 \cdot (1 - F_{t(n-2)}(t))$	$1 - F_{t(n-2)}(t)$	$F_{t(n-2)}(t)$

voraussetzungen	$X_1^A,\dots,X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B,\dots,X_{n_B}^B$ zu Y^B .			
Nullhypothese	$H_0: p_A = p_B$	$H_0: p_A \leq p_B$	$H_0: p_A \geq p_B$	
Gegenhypothese	$H_1: p_A \neq p_B$	$H_1: p_A > p_B$	$H_1: p_A < p_B$	
Teststatistik	$t = \frac{\widehat{p}_A - \widehat{p}_B}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}} = \frac{\widehat{p}_A - \widehat{p}_B}{S} \sqrt{\frac{n_A \cdot n_B}{n_A + n_B}}$			
Verteilung (H ₀)	t für $p_A=p_B$ näherungsweise $t(n_A+n_B-2)$ -verteilt			
	(Näherung ok, falls $5 \le n_A \widehat{p}_A \le n_A - 5$ und $5 \le n_B \widehat{p}_B \le n_B - 5$)			
Benötigte Größen	$\widehat{p}_{A} = \frac{1}{n_{A}} \sum_{i=1}^{n_{A}} X_{i}^{A}, \widehat{p}_{B} = \frac{1}{n_{B}} \sum_{i=1}^{n_{B}} X_{i}^{B},$			
	$S = \sqrt{\frac{n_A \cdot \widehat{p}_A \cdot (1 - \widehat{p}_A) + n_B \cdot \widehat{p}_B \cdot (1 - \widehat{p}_B)}{n_A + n_B - 2}}$			
Kritischer Bereich	$(-\infty, -t_{n_A+n_B-2;1-\frac{\alpha}{2}})$	$(t_{n_A+n_B-2;1-\alpha},\infty)$	$(-\infty, -t_{n_A+n_B-2;1-\alpha})$	
zum Niveau α	$\cup (t_{n_A+n_B-2;1-\frac{\alpha}{2}},\infty)$			
<i>p</i> -Wert	$2 \cdot (1 - F_{t(n_A + n_B - 2)}(t))$	$1 - F_{t(n_A + n_B - 2)}(t)$	$F_{t(n_A+n_B-2)}(t)$	

Zusammenfassung: Einfache Varianzanalyse

Anwendungs- voraussetzungen	exakt: $Y_j \sim N(\mu_j, \sigma^2)$ für $j \in \{1, \dots, k\}$ approximativ: Y_j beliebig verteilt mit $E(Y_j) = \mu_j$, $Var(Y_j) = \sigma^2$ k unabhängige einfache Stichproben $X_{j,1}, \dots, X_{j,n_j}$ vom Umfang n_j zu Y_j für $j \in \{1, \dots, k\}$, $n = \sum_{j=1}^k n_j$	
Nullhypothese Gegenhypothese	$H_0: \mu_1 = \mu_j$ für alle $j \in \{2, \dots, k\}$ $H_1: \mu_1 eq \mu_j$ für (mindestens) ein $j \in \{2, \dots, k\}$	
Teststatistik	$F = \frac{SB/(k-1)}{SW/(n-k)}$	
Verteilung (H_0)	F ist (approx.) $F(k-1,n-k)$ -verteilt, falls $\mu_1=\ldots=\mu_k$	
Benötigte Größen	$\overline{\mathbf{x}}_j = rac{1}{n_j} \sum_{i=1}^{n_j} \mathbf{x}_{j,i} ext{ für } j \in \{1,\dots,k\}, \ \overline{\mathbf{x}} = rac{1}{n} \sum_{j=1}^k n_j \cdot \overline{\mathbf{x}}_j,$	
	$SB = \sum_{j=1}^{n} n_j \cdot (\overline{x}_j - \overline{x})^2, SW = \sum_{j=1}^{n} \sum_{i=1}^{j} (x_{j,i} - \overline{x}_j)^2$	
Kritischer Bereich zum Niveau α	$(F_{k-1,n-k;1-\alpha},\infty)$	
<i>p</i> -Wert	$1 - F_{F(k-1,n-k)}(F)$	
eßende Statistik	Folie 2	

Konfidenzintervalle und Tests 10.4

Zusammenfassung: t-Test für den Parameter β_2

im einfachen linearen Regressionsmodell mit Normalverteilungsannahme

Anwendungs-	exakt: $y_i = \beta_1 + \beta_2 \cdot x_i + u_i$ mit $u_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ für $i \in \{1, \dots, n\}$,			
voraussetzungen	σ^2 unbekannt, x_1, \ldots, x_n deterministisch und bekannt,			
	Realisation y_1, \ldots, y_n beobachtet			
Nullhypothese	$H_0: \beta_2 = \beta_2^0$	$H_0: \beta_2 \leq \beta_2^0$	$H_0: \beta_2 \ge \beta_2^0$	
Gegenhypothese	$H_1: \beta_2 \neq \beta_2^0$	$H_1: \beta_2 > \beta_2^0$	$H_1: \beta_2 < \beta_2^0$	
Teststatistik	$t = \frac{\widehat{eta}_2 - eta_2^0}{\widehat{\sigma}_{\widehat{\sigma}}}$			
Teststatistik		$\iota = \overline{\widehat{\sigma}_{\widehat{\beta}_2}}$		
Verteilung (H_0)	t für $eta_2=eta_2^0$ $t(n-2)$ -verteilt			
Benötigte Größen	$\widehat{\beta}_2 = \frac{s_{X,Y}}{s_X^2}, \widehat{\sigma}_{\widehat{\beta}_2} = \sqrt{\frac{s_Y^2 - \widehat{\beta}_2 \cdot s_{X,Y}}{(n-2) \cdot s_X^2}}$			
Kritischer Bereich	$\left(-\infty, -t_{n-2;1-\frac{\alpha}{2}}\right)$	$(t_{n-2;1-lpha},\infty)$	$(-\infty, -t_{n-2;1-\alpha})$	
zum Niveau α	$\cup (t_{n-2;1-\frac{\alpha}{2}},\infty)$			
<i>p</i> -Wert	$2 \cdot (1 - F_{t(n-2)}(t))$	$1 - F_{t(n-2)}(t)$	$F_{t(n-2)}(t)$	