Zusammenfassung: Gauß-Test für den Mittelwert bei bekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}$ unbekannt, σ^2 bekannt approximativ: $E(Y) = \mu \in \mathbb{R}$ unbekannt, $\mathrm{Var}(Y) = \sigma^2$ bekannt X_1, \dots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: \mu = \mu_0$ $H_0: \mu \le \mu_0$ $H_0: \mu \ge \mu_0$ $H_1: \mu \ne \mu_0$ $H_1: \mu > \mu_0$ $H_1: \mu < \mu_0$		
Teststatistik	$N = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$		
Verteilung (H_0)	N für $\mu=\mu_0$ (näherungsweise) $N(0,1)$ -verteilt		
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}}) \qquad (N_{1-\alpha}, \infty) \qquad (-\infty, -N_{1-\alpha})$ $\cup (N_{1-\frac{\alpha}{2}}, \infty)$		
p-Wert	$2 \cdot (1 - \Phi(N))$	1 - Φ(N)	Φ(N)

Anwendungs- voraussetzungen	approximativ: $Y \sim B(1, \rho)$ mit $\rho \in [0, 1]$ unbekannt X_1, \ldots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: p = p_0$ $H_0: p \le p_0$ $H_0: p \ge p_0$ $H_1: p \ne p_0$ $H_1: p < p_0$		
Teststatistik	$N = \frac{\widehat{p} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} \sqrt{n}$		
Verteilung (H_0)	N für $p = p_0$ näherungsweise $N(0, 1)$ -verteilt		
Benötigte Größen	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}})$ $\cup (N_{1-\frac{\alpha}{2}}, \infty)$	$(N_{1-\alpha},\infty)$	$(-\infty, -N_{1-\alpha})$
p-Wert	$2 \cdot (1 - \Phi(N))$	1 - Φ(N)	Φ(N)

7 Tests für Mittelwert und Varianz	Chi-Q
Zusammenfassung: χ^2 -Test fü	ir die Varianz
einer normalverteilten Zufallsvariablen mit unbek	anntem Erwartungswert

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$ unbekannt, $\sigma^2 \in \mathbb{R}_{++}$ unbekannt X_1, \dots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0 : \sigma^2 = \sigma_0^2$ $H_1 : \sigma^2 \neq \sigma_0^2$	$H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$
Teststatistik	$\chi^2 = \frac{(n-1)S^2}{\sigma_s^2}$		
Verteilung (H ₀)	χ^2 (für σ^2	$=\sigma_0^2$) $\chi^2(n-1)$ -v	erteilt
Benötigte Größen	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right)$		
	$\operatorname{mit} \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$[0, \chi^2_{n-1;\frac{\alpha}{2}})$ $\cup (\chi^2_{n-1;1-\frac{\alpha}{2}}, \infty)$	$(\chi^2_{n-1;1-\alpha}, \infty)$	$[0,\chi^{2}_{n-1;\alpha})$
p-Wert	$2 \cdot \min \{F_{\chi^2(n-1)}(\chi^2), 1 - F_{\chi^2(n-1)}(\chi^2)\}$	$1 - F_{\chi^2(n-1)}(\chi^2)$	$F_{\chi^{2}(n-1)}(\chi^{2})$

Zusammenfassung: t-Differenzentest

Anwendungs- voraussetzungen	exakt: (Y^A, Y^B) gemeinsam (zweidimensional) normalverteilt, $E(Y^A) = \mu_A, E(Y^B) = \mu_B$ sowie Varianzen/Kovarianz unbekannt approx: $E(Y^A) = \mu_A, E(Y^B) = \mu_B, Var(Y^A), Var(Y^B)$ unbek. $(X_1^A, X_1^B), \dots, (X_n^A, X_n^B)$ einfache Stichprobe zu (Y^A, Y^B) .		
Nullhypothese Gegenhypothese	$H_0 : \mu_A = \mu_B$ $H_1 : \mu_A \neq \mu_B$	$H_0: \mu_A \le \mu_B$ $H_1: \mu_A > \mu_B$	$H_0 : \mu_A \ge \mu_B$ $H_1 : \mu_A < \mu_B$
Teststatistik	$t = \frac{\overline{X}}{S} \sqrt{n}$		
Verteilung (H ₀)	t für $\mu_A=\mu_B$ (näherungsweise) $t(n-1)$ -verteilt		
Benötigte Größen	$X_{i} = X_{i}^{A} - X_{i}^{B} \text{ für } i \in \{1, \dots, n\}, \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}\right)}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n-1;1-\frac{\alpha}{2}})$ $\cup (t_{n-1;1-\frac{\alpha}{2}}, \infty)$	$(t_{n-1;1-lpha},\infty)$	$(-\infty, -t_{n-1;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n-1)}(t))$	$1 - F_{t(n-1)}(t)$	$F_{t(n-1)}(t)$

Zusammenfassung: F-Test zum Vergleich der Varianzen

zweier normalverteilter Zufallsvariablen				
Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, $Y^B \sim N(\mu_B, \sigma_B^2)$, μ_A, μ_B, σ_A^2 , σ_B^2 unbek. $X_1^A, \dots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \dots, X_{n_B}^B$ zu Y^B .			
Nullhypothese Gegenhypothese	$H_0: \sigma_A^2 = \sigma_B^2$ $H_0: \sigma_A^2 \le \sigma_B^2$ $H_0: \sigma_A^2 \le \sigma_B^2$ $H_1: \sigma_A^2 \ne \sigma_B^2$ $H_1: \sigma_A^2 > \sigma_B^2$ $H_1: \sigma_A^2 < \sigma_B^2$			
Teststatistik	$F=rac{S_{YA}^2}{S_{VB}^2}$			
Verteilung (H ₀)	F unter H_0 für σ_A^2	$= \sigma_B^2 F(n_A - 1, n_B - 1)$	1)-verteilt	
Benötigte Größen	$\overline{X}^{\overline{A}} = \frac{1}{n_A} \sum_{i=1}^{n_A} X_i^A$, $\overline{X}^{\overline{B}} = \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B$,			
	$ S_{Y^A}^2 = \frac{1}{n_A - 1} \sum_{i=1}^{n_A} (X_i^A - \overline{X}^A)^2 = \frac{1}{n_A - 1} \left(\left(\sum_{i=1}^{n_A} (X_i^A)^2 \right) - n_A \overline{X}^A^2 \right) $ $ S_{Y^B}^2 = \frac{1}{n_B - 1} \sum_{i=1}^{n_B} (X_i^B - \overline{X}^B)^2 = \frac{1}{n_B - 1} \left(\left(\sum_{i=1}^{n_A} (X_i^B)^2 \right) - n_B \overline{X}^B^2 \right) $			
Kritischer Bereich zum Niveau α	$ \begin{bmatrix} [0, F_{n_A-1, n_B-1; \frac{\alpha}{2}}) \\ \cup (F_{n_A-1, n_B-1; 1-\frac{\alpha}{2}}, \infty) \end{bmatrix} (F_{n_A-1, n_B-1; 1-\alpha}, \infty) \begin{bmatrix} [0, F_{n_A-1, n_B-1; \alpha}) \\ [0, F_{n_A-1, n_B-1; \alpha}] \end{bmatrix} $			
p-Wert	$2 \cdot \min \left\{ F_{F(n_A-1,n_B-1)}(F), 1 - F_{F(n_A-1,n_B-1)}(F) \right\}$	$1-F_{F(n_A-1,n_B-1)}(F)$	$F_{F(n_A-1,n_B-1)}(F)$	
Schließende Statistik (WS 2019/20	SchlinBende Statistik (WS 2019/20) Folie 2			

Zusammenfassung: (Approx.) Gauß-Test für Anteilswert p

Anwendungs- voraussetzungen	approximativ: $Y \sim B(1, \rho)$ mit $\rho \in [0, 1]$ unbekannt X_1, \ldots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: p = p_0$ $H_0: p \le p_0$ $H_0: p \ge p_0$ $H_1: p \ne p_0$ $H_1: p < p_0$		
Teststatistik	$N = \frac{\hat{p} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} \sqrt{n}$		
Verteilung (H_0)	N für $p = p_0$ näherungsweise $N(0, 1)$ -verteilt		
Benötigte Größen	$\widehat{\rho} = \frac{1}{n} \sum_{i=1}^{n} X_i$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}})$ $(N_{1-\alpha}, \infty)$ $(-\infty, -N_{1-\alpha})$		
p-Wert	$2 \cdot (1 - \Phi(N))$	1 - Φ(N)	Φ(<i>N</i>)

Zusammenfassung: Chi-Quadrat-Anpassungstest zur Anpassung an eine vorgegebene Verteilung

Anwendungs- voraussetzungen	approximativ: Y beliebig verteilt X_1,\ldots,X_n einfache Stichprobe zu Y $k-1$ Klassengrenzen $a_1 < a_2 < \ldots < a_{k-1}$ vorgegeben
Nullhypothese Gegenhypothese	$H_0: F_Y = F_0$ $H_1: F_Y \neq F_0$
Teststatistik	$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i^0)^2}{np_i^0} = n \sum_{i=1}^k \frac{\left(\frac{n_i}{n} - p_i^0\right)^2}{p_i^0} = \left(\frac{1}{n} \sum_{i=1}^k \frac{n_i^2}{p_i^0}\right) - r$
Verteilung (H ₀)	χ^2 ist näherungsweise $\chi^2(k-1)$ -verteilt, falls $F_Y = F_0$ (Näherung nur vernünftig, falls $np_i^0 \ge 5$ für $i \in \{1, \dots, k\}$)
Benötigte Größen	$\begin{aligned} p_i^0 &= F_0(a_i) - F_0(a_{i-1}) \text{ mit } a_0 := -\infty, a_k := \infty, \\ n_i &= \#\{j \in \{1, \dots, n\} \mid x_j \in (a_{i-1}, a_i]\}, i \in \{1, \dots, k\} \end{aligned}$
Kritischer Bereich zum Niveau α	$(\chi^2_{k-1;1-\alpha},\infty)$
p-Wert	$1 - F_{\chi^2(k-1)}(\chi^2)$

Zusammenfassung: 2-Stichproben-Gauß-Test

bei bekannten Varianzen

Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, $Y^B \sim N(\mu_B, \sigma_B^2)$, σ_A^2 , σ_B^2 bekannt $X_1^A, \dots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \dots, X_{n_B}^B$ zu Y^B .		
Nullhypothese Gegenhypothese	$H_0 : \mu_A = \mu_B$ $H_1 : \mu_A \neq \mu_B$	$H_0 : \mu_A \le \mu_B$ $H_1 : \mu_A > \mu_B$	$H_0: \mu_A \ge \mu_B$ $H_1: \mu_A < \mu_B$
Teststatistik Verteilung (H ₀)	$N = \frac{\overline{X^A} - \overline{X^B}}{\sqrt{\frac{\sigma_A^2}{\sigma_A^2} + \frac{\sigma_B^2}{\sigma_B^2}}}$		
Benötigte Größen	N für $\mu_A = \mu_B$ $N(0, 1)$ -verteilt $\overline{X^A} = \frac{1}{n_A} \sum_{i=1}^{n_A} X_i^A$, $\overline{X^B} = \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B$		
Kritischer Bereich zum Niveau α	$(-\infty, -N_{1-\frac{\alpha}{2}})$ $\cup (N_{1-\frac{\alpha}{2}}, \infty)$	(N_{1-lpha},∞)	$(-\infty, -N_{1-\alpha})$
p-Wert	$2 \cdot (1 - \Phi(N))$	1 - Φ(N)	Φ(N)

Schließende Statistik (WS 2019/20)	Folie 187
9 Mittelwert- und Varianzvergleiche	Mittelwertvergleiche bei $k>2$ unabhängigen Stichproben 9.4

Zusammenfassung: Einfache Varianzanalyse

Anwendungs- voraussetzungen	exakt: $Y_j \sim N(\mu_j, \sigma^2)$ für $j \in \{1, \dots, k\}$ approximativ: Y_j beliebig verteilt mit $E(Y_j) = \mu_j$, $Var(Y_j) = \sigma^2$ k unabhängige einfache Stichproben $X_{j,1}, \dots, X_{j,\sigma_j}$ vom Umfang n_j zu Y_j für $j \in \{1, \dots, k\}$, $n = \sum_{j=1}^k n_j$	
Nullhypothese Gegenhypothese	$H_0: \mu_1 = \mu_j$ für alle $j \in \{2, \dots, k\}$ $H_1: \mu_1 \neq \mu_j$ für (mindestens) ein $j \in \{2, \dots, k\}$	
Teststatistik	$F = \frac{SB/(k-1)}{SW/(n-k)}$	
Verteilung (H ₀)	F ist (approx.) $F(k-1,n-k)$ -verteilt, falls $\mu_1=\ldots=\mu_k$	
Benötigte Größen	$\begin{split} \overline{\mathbf{x}}_j &= \frac{1}{n_j} \sum_{i=1}^{n_j} \mathbf{x}_{j,i} \text{ für } j \in \{1, \dots, k\}, \ \overline{\mathbf{x}} = \frac{1}{n_j} \sum_{j=1}^k \mathbf{n}_j \cdot \overline{\mathbf{x}}_j, \\ SB &= \sum_{j=1}^k \mathbf{n}_j \cdot (\overline{\mathbf{x}}_j - \overline{\mathbf{x}})^2, SW = \sum_{j=1}^k \sum_{i=1}^{n_j} (\mathbf{x}_{j,i} - \overline{\mathbf{x}}_j)^2 \end{split}$	
Kritischer Bereich zum Niveau α	$(F_{k-1,n-k;1-lpha},\infty)$	
p-Wert	$1 - F_{F(k-1,n-k)}(F)$	

Zusammenfassung: t-Test für den Mittelwert bei unbekannter Varianz

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{++}$ unbekannt approximativ: $E(Y) = \mu \in \mathbb{R}, \text{Var}(Y) = \sigma^2 \in \mathbb{R}_{++}$ unbekannt X_1, \dots, X_n einfache Stichprobe zu Y		
Nullhypothese Gegenhypothese	$H_0: \mu = \mu_0$ $H_0: \mu \le \mu_0$ $H_0: \mu \ge \mu_0$ $H_1: \mu \ne \mu_0$ $H_1: \mu < \mu_0$		
Teststatistik	$t = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$		
Verteilung (H ₀)	t für $\mu=\mu_0$ (näherungsweise) $t(n-1)$ -verteilt		
Benötigte Größen	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2\right)}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n-1;1-\frac{\alpha}{2}})$ $\cup (t_{n-1;1-\frac{\alpha}{2}}, \infty)$	$(t_{n-1;1-lpha},\infty)$	$(-\infty, -t_{n-1;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n-1)}(t))$	$1 - F_{t(n-1)}(t)$	$F_{t(n-1)}(t)$

Zusammenfassung: Chi-Quadrat-Anpassungstest zur Anpassung an parametrische Verteilungsfamilie

Anwendungs- voraussetzungen	approx.: Y beliebig verteilt, X_1,\ldots,X_n einf. Stichprobe zu Y Familie von Verteilungsfunktionen F_{θ} für $\theta \in \Theta$ vorgegeben $k-1$ Klassengrenzen $a_1 < a_2 < \ldots < a_{k-1}$ vorgegeben
Nullhypothese Gegenhypothese	$H_0: F_Y = F_{\theta}$ für ein $\theta \in \Theta$ $H_1: F_Y \neq F_{\theta}$ (für alle $\theta \in \Theta$)
Teststatistik	$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i}^{0})^{2}}{np_{i}^{0}} = n \sum_{i=1}^{k} \frac{(\frac{n_{i}}{n} - p_{i}^{0})^{2}}{p_{i}^{0}} = \left(\frac{1}{n} \sum_{i=1}^{k} \frac{n_{i}^{2}}{p_{i}^{0}}\right) - n$
Verteilung (H ₀)	χ^2 ist unter H_0 näherungsweise $\chi^2(k-r-1)$ -verteilt, wenn $\widehat{\theta}$ ML-Schätzer des r -dim. Verteilungsparameters θ auf
	Basis klassierter Daten ist (Verwendung von $\widehat{\theta}$ siehe unten). (Näherung nur vernünftig, falls $np_i^0 \geq 5$ für $i \in \{1, \dots, k\}$)
Benötigte Größen	$\begin{array}{l} p_i^0 = F_{\bar{\theta}}(a_k) - F_{\bar{\theta}}(a_{k-1}) \text{ mit } a_0 := -\infty, a_k := \infty, \\ n_i = \#\{j \in \{1, \dots, n\} \mid x_j \in (a_{i-1}, a_i]\}, i \in \{1, \dots, k\} \end{array}$
Kritischer Bereich zum Niveau α	$(\chi^2_{k-r-1;1-lpha},\infty)$
p-Wert	$1 - F_{\chi^2(k-r-1)}(\chi^2)$
lende Statistik (WS 2019/20)	Fe

Zusammenfassung: 2-Stichproben-t-Test

im einfachen linearen Regressionsmodell mit Normalverteilungsannahme

bei unbekannten, aber übereinstimmenden Varianzen

Anwendungs- voraussetzungen	exakt: $Y^A \sim N(\mu_A, \sigma_A^2)$, approx.: $E(Y^A) = \mu_A$, $E(X_1^A, \dots, X_{n_A}^A$ einfache Sti einfacher Stichprobe X_1^B	$(Y^B) = \mu_B, Var(Y^A)$ chprobe zu Y^A , una	$= Var(Y^B)$ unbekannt
Nullhypothese Gegenhypothese	$H_1: \mu_A \neq \mu_B$		$H_0 : \mu_A \ge \mu_B$ $H_1 : \mu_A < \mu_B$
Teststatistik	$t = \frac{\overline{X^A} - \overline{X^B}}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}} = \frac{\overline{X^A} - \overline{X^B}}{S} \sqrt{\frac{n_A \cdot n_B}{n_A + n_B}}$		
Verteilung (H_0)	t für $\mu_A = \mu_B$ (näherungsweise) $t(n_A + n_B - 2)$ -verteilt		
Benötigte Größen	$\begin{split} \overline{X^A} &= \frac{1}{n_A} \sum_{i=1}^{n_B} X_i^A, \overline{X^B} &= \frac{1}{n_B} \sum_{i=1}^{n_B} X_i^B, \\ S &= \sqrt{\frac{(n_A - 1)S_{VA}^2 + (n_B - 1)S_{VB}^2}{n_A + n_B - 2}} &= \sqrt{\frac{\sum_{i=1}^{n_A} (X_i^A - \overline{X^A})^2 + \sum_{i=1}^{n_B} (X_i^B - \overline{X^B})^2}{n_A + n_B - 2}} \end{split}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n_A+n_B-2;1-\frac{\alpha}{2}})$ $\cup (t_{n_A+n_B-2;1-\frac{\alpha}{2}}, \infty)$	$(t_{n_A+n_B-2;1-\alpha},\infty)$	$(-\infty, -t_{n_A+n_B-2;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n_A+n_B-2)}(t))$	$1 - F_{t(n_1+n_2-2)}(t)$	$F_{t(n_A+n_B-2)}(t)$

Schließende Statistik (WS 2019/20)	Folie 189	9
10 Lineare Regression	Konfidenzintervalle und Tests 10.4	1
Zusammenfassung: t-Test für	den Parameter β_1	

Anwendungs- voraussetzungen	exakt: $y_i = \beta_1 + \beta_2 \cdot x_i + u_i$ mit $u_i \stackrel{\mathrm{iid}}{\sim} N(0, \sigma^2)$ für $i \in \{1, \dots, n\}$, σ^2 unbekannt, x_1, \dots, x_n deterministisch und bekannt, Realisation y_1, \dots, y_n beobachtet		
Nullhypothese Gegenhypothese	$H_0: \beta_1 = \beta_1^0$ $H_1: \beta_1 \neq \beta_1^0$	$H_0: \beta_1 \le \beta_1^0$ $H_1: \beta_1 > \beta_1^0$	$H_0: \beta_1 \ge \beta_1^0$ $H_1: \beta_1 < \beta_1^0$
Teststatistik	$t = rac{\widehat{eta}_1 - eta_1^0}{\widehat{\sigma}_{\widehat{eta}_*}}$		
Verteilung (H_0)	t für $\beta_1=\beta_1^0$ $t(n-2)$ -verteilt		
Benötigte Größen	$\widehat{\beta}_2 = \frac{s_{X,Y}}{s_X^2}, \widehat{\beta}_1 = \overline{y} - \widehat{\beta}_2 \cdot \overline{x}, \widehat{\sigma}_{\widehat{\beta}_1} = \sqrt{\frac{(s_Y^2 - \widehat{\beta}_2 \cdot s_{X,Y}) \cdot \overline{x^2}}{(n-2) \cdot s_X^2}}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n-2;1-\frac{\alpha}{2}})$ $\cup (t_{n-2;1-\frac{\alpha}{2}}, \infty)$	$(t_{n-2;1-\alpha},\infty)$	$(-\infty, -t_{n-2;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n-2)}(t))$	$1 - F_{t(n-2)}(t)$	$F_{t(n-2)}(t)$

Zusammenfassung: χ^2 -Test für die Varianz einer normalverteilten Zufallsvariablen mit bekanntem Erwartungswert

Anwendungs- voraussetzungen	exakt: $Y \sim N(\mu, \sigma^2)$, X_1, \dots, X_n einfache S		$\sigma^2 \in \mathbb{R}_{++}$ unbekannt
Nullhypothese Gegenhypothese	$H_0 : \sigma^2 = \sigma_0^2$ $H_1 : \sigma^2 \neq \sigma_0^2$	$H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$
Teststatistik	$\chi^2 = \frac{n \cdot \widetilde{S}^2}{\sigma_0^2}$		
Verteilung (H ₀)	χ^2 (für $\sigma^2 = \sigma_0^2$) $\chi^2(n)$ -verteilt		
Benötigte Größen	$\widetilde{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$		
Kritischer Bereich zum Niveau α	$[0, \chi^2_{n;\frac{\alpha}{2}})$ $\cup (\chi^2_{n;1-\frac{\alpha}{2}}, \infty)$	$(\chi^2_{n;1-\alpha},\infty)$	$[0,\chi^2_{n;\alpha})$
p-Wert	$2 \cdot \min \{F_{\chi^{2}(n)}(\chi^{2}), \\ 1 - F_{\chi^{2}(n)}(\chi^{2})\}$	$1 - F_{\chi^2(n)}(\chi^2)$	$F_{\chi^{2}(n)}(\chi^{2})$

Zusammenfassung: Chi-Quadrat-Unabhängigkeitstest

Anwendungs-	approximativ: (Y^A, Y^B) beliebig verteilt
voraussetzungen	asphormatic, (X_1^A, X_1^B) ,, (X_1^A, X_n^B) einfache Stichprobe zu (Y^A, Y^B) Ausprägungen (a_1, \dots, a_k) von Y^A , $\{b_1, \dots, b_l\}$ von Y^B oder Klassengrenzen $a_1 < \dots < a_{k-1}$ zu Y^A , $b_1 < \dots < b_{l-1}$ zu Y^L
Nullhypothese Gegenhypothese	$H_0: Y^A, Y^B$ stochastisch unabhängig $H_1: Y^A, Y^B$ nicht stochastisch unabhängig
Teststatistik	$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(n_{ij} - \tilde{n}_{ij})^{2}}{\tilde{n}_{ij}} = \left(\sum_{i=1}^{k} \sum_{j=1}^{l} \frac{n_{ij}^{2}}{\tilde{n}_{ij}}\right) - n$
Verteilung (H ₀)	χ^2 ist näherungsweise $\chi^2((k-1)\cdot(\stackrel{\cdot}{(1-1)})$ -verteilt, falls H_0 gil (Näherung nur vernünftig, falls $\overline{n}_{ij}\geq 5$ für alle i,j)
Benötigte Größen	$ \begin{aligned} & n_{ij} = \#\{m \in \{1, \dots, n\} (x_m, y_m) \in A_i \times B_j\} \text{ für alle } i, j \text{ mit } \\ & A_i = \{a_i\}, B_j = \{b_j\} \text{ bzw. Klassen } A_i, B_j \text{ nach vorg. Grenzen,} \\ & \widetilde{n}_{ij} = \frac{n_i \cdot n_j}{n} \text{ mit } n_i \cdot \sum_{j=1}^{j} n_{ij}, n_{:j} = \sum_{i=1}^{k} n_{ij}, \end{aligned} $
Kritischer Bereich zum Niveau α	$(\chi^2_{(k-1)\cdot(l-1);1-lpha},\infty)$

Zusammenfassung: 2-Stichproben-t-Test für Anteilswerte

Anwendungs- voraussetzungen	approx.: $Y^A \sim B(1,p_A)$, $Y^B \sim B(1,p_B)$, p_A , p_B unbekannt $X_1^A, \ldots, X_{n_A}^A$ einfache Stichprobe zu Y^A , unabhängig von einfacher Stichprobe $X_1^B, \ldots, X_{n_B}^B$ zu Y^B .		
Nullhypothese Gegenhypothese		$H_0: p_A \le p_B$ $H_1: p_A > p_B$	$H_0: p_A \ge p_B$ $H_1: p_A < p_B$
Teststatistik	$t = \frac{\widehat{p}_A - \widehat{p}_B}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}} = \frac{\widehat{p}_A - \widehat{p}_B}{S} \sqrt{\frac{n_A \cdot n_B}{n_A + n_B}}$		
Verteilung (H ₀)	t für $p_A=p_B^a$ mäherungsweise $t(n_A+n_B-2)$ -verteilt (Näherung ok, falls $5\leq n_A\widehat{p}_A\leq n_A-5$ und $5\leq n_B\widehat{p}_B\leq n_B-5$)		
Benötigte Größen	$\begin{split} \widehat{\rho}_{A} &= \frac{1}{n_{A}} \sum_{i=1}^{n_{A}} X_{i}^{A}, \widehat{\rho}_{B} &= \frac{1}{n_{B}} \sum_{i=1}^{n_{B}} X_{i}^{B}, \\ S &= \sqrt{\frac{n_{A} \overline{\rho}_{A} \cdot (1 - \overline{\rho}_{A}) + n_{B} \cdot \overline{\rho}_{B} \cdot (1 - \overline{\rho}_{B})}{n_{A} + n_{B} - 2}} \end{split}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n_A+n_B-2;1-\frac{\alpha}{2}})$ $\cup (t_{n_A+n_B-2;1-\frac{\alpha}{2}}, \infty)$	$(t_{n_A+n_B-2;1-\alpha},\infty)$	$(-\infty, -t_{n_A+n_B-2;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n_A + n_B - 2)}(t))$	$1-F_{t(n_A+n_B-2)}(t)$	$F_{t(n_A+n_B-2)}(t)$

Zusammenfassung: t-Test für den Parameter β_2 im einfachen linearen Regressionsmodell mit Normalverteilungsannahm

Anwendungs- voraussetzungen	exakt: $y_i = \beta_1 + \beta_2 \cdot x_i + u_i$ mit $u_i \stackrel{iid}{\sim} N(0, \sigma^2)$ für $i \in \{1, \dots, n\}$, σ^2 unbekannt, x_1, \dots, x_n deterministisch und bekannt, Realisation y_1, \dots, y_n beobachtet		
Nullhypothese Gegenhypothese	$H_0: \beta_2 = \beta_2^0$ $H_1: \beta_2 \neq \beta_2^0$	$H_0: \beta_2 \le \beta_2^0$ $H_1: \beta_2 > \beta_2^0$	$H_0: \beta_2 \ge \beta_2^0$ $H_1: \beta_2 < \beta_2^0$
Teststatistik	$t=rac{\widehat{eta}_2-eta_2^0}{\widehat{\sigma}_{\widehat{eta}_2}}$		
Verteilung (H_0)	t für $\beta_2=\beta_2^0$ $t(n-2)$ -verteilt		
Benötigte Größen	$\widehat{\beta}_2 = \frac{s_{X,Y}}{s_X^2}, \widehat{\sigma}_{\widehat{\beta}_2} = \sqrt{\frac{s_Y^2 - \widehat{\beta}_2 \cdot s_{X,Y}}{(n-2) \cdot s_X^2}}$		
Kritischer Bereich zum Niveau α	$(-\infty, -t_{n-2;1-\frac{\alpha}{2}})$ $\cup (t_{n-2;1-\frac{\alpha}{2}}, \infty)$	$(t_{n-2;1-\alpha},\infty)$	$(-\infty, -t_{n-2;1-\alpha})$
p-Wert	$2 \cdot (1 - F_{t(n-2)}(t))$	$1 - F_{t(n-2)}(t)$	$F_{t(n-2)}(t)$