

11. Übungsblatt zur Vorlesung Deskriptive Statistik und Wahrscheinlichkeitsrechnung SS 2023

Aufgabe 50

Die Reparaturzeit für einen Kühlschrank (Angaben in Stunden [h]) lasse sich als eine exponentialverteilte Zufallsvariable X mit der Varianz 0.0625 [h]² auffassen. Mit welcher Wahrscheinlichkeit dauert eine Kühlschrankreparatur

- (a) länger als eine Stunde?
- (b) weniger als eine halbe Stunde?
- (c) Wie lange dauert im Durchschnitt eine Kühlschrankreparatur?

Aufgabe 51

Die Analyse der Tagesumsätze mittlerer und kleiner Geschäfte für Obst und Gemüse ergab, dass der Tagesumsatz X (Angaben in \in) dieser Geschäfte als eine normalverteilte Zufallsvariable aufgefasst werden kann, wobei $X \sim N(750, 300^2)$ gilt.

- (a) Wie groß ist die Wahrscheinlichkeit, dass der Tagesumsatz 900 € übersteigt?
- (b) Wie groß ist die Wahrscheinlichkeit, dass der Tagesumsatz zwischen $300 \in 100$ und $1000 \in 100$ liegt?
- (c) Ermitteln Sie das obere Umsatzquartil.
- (d) Ermitteln Sie den zum Erwartungswert symmetrischen Bereich, in dem der Tagesumsatz mit einer Wahrscheinlichkeit von 95% liegt.

Aufgabe 52

Ein fairer Würfel wird zweimal geworfen. Es seien X die Anzahl, mit der die Augenzahl "6" und Y die Anzahl, mit der die Augenzahl "1" erzielt wird.

- (a) Geben Sie die gemeinsame Verteilung des Zufallsvektors (X,Y) an.
- (b) Geben Sie die Randverteilungen von X und Y an.
- (c) Bestimmen Sie $P(\{X \le 1, Y \le 1\})$.
- (d) Prüfen Sie nach, ob X und Y stochastisch unabhängig sind.

Aufgabe 53

Für die **unabhängigen** Zufallsvariablen X und Y ist die gemeinsame Wahrscheinlichkeitstabelle unvollständig wie folgt gegeben:

X	1	2	p_{i} .
-1	1/8	•	
0	•		3/8
1	•		
$p_{\cdot j}$	1/3	•	1

Vervollständigen Sie die Tabelle.

Aufgabe 54

Gegeben sei die folgende (gemeinsame) Dichtefunktion eines zweidimensionalen Zufallsvektors (X,Y):

$$f_{(X,Y)}(x,y) = \begin{cases} 4xy & \text{für } 0 \le x \le 1 \land 0 \le y \le 1\\ 0 & \text{sonst} \end{cases}$$

- (a) Berechnen Sie die Wahrscheinlichkeit, dass (X, Y) einen Wert in $(0, 0.5] \times (0.5, 1]$ annimmt.
- (b) Berechnen Sie Dichtefunktionen f_X bzw. f_Y zu den beiden Randverteilungen von X bzw. Y
- (c) Sind X und Y stochastisch unabhängig? Begründen Sie Ihre Antwort.